“AÑO DE LA DIVERSIFICACIÓN PRODUCTIVA Y DEL FORTALECIMIENTO DE LA EDUCACIÓN”

UNIVERSIDAD NACIONAL DE PIURA
FACULTAD DE ECONOMÍA

TESIS PARA OPTAR
EL TÍTULO PROFESIONAL DE ECONOMISTA

DETERMINACIÓN DE LA VALORACIÓN ECONÓMICA DEL PROYECTO DE INVERSIÓN PÚBLICA "MEJORAMIENTO Y AMPLIACIÓN DEL SISTEMA DE AGUA POTABLE Y ALCANTARILLADO ASENTAMIENTO HUMANO LA MOLINA – PIURA", A TRAVES DEL METODO DE VALORACION CONTINGENTE.

JESÚS ENRIQUE GALLO PORTOCARRERO
TESISTA

PIURA, MAYO 2015
DETERMINACIÓN DE LA VALORACIÓN ECONÓMICA DEL PROYECTO DE INVERSIÓN PÚBLICA “MEJORAMIENTO Y AMPLIACIÓN DEL SISTEMA DE AGUA POTABLE Y ALCANTARILLADO ASENTAMIENTO HUMANO LA MOLINA – PIURA”, A TRAVES DEL METODO DE VALORACION CONTINGENTE.

JESUS ENRIQUE GALLO PORTOCARRERO
TESISTA

ECON. EDUARDO LITANO BOZA
ASESOR

PIURA, MAYO 2015
“AÑO DE LA DIVERSIFICACIÓN PRODUCTIVA Y DEL
FORTALECIMIENTO DE LA EDUCACIÓN”

UNIVERSIDAD NACIONAL DE PIURA
FACULTAD DE ECONOMIA

TESIS PARA OPTAR
EL TÍTULO PROFESIONAL DE ECONOMISTA

DETERMINACIÓN DE LA VALORACIÓN ECONÓMICA DEL PROYECTO
DE INVERSIÓN PÚBLICA “MEJORAMIENTO Y AMPLIACIÓN DEL
SISTEMA DE AGUA POTABLE Y ALCANTARILLADO ASENTAMIENTO
HUMANO LA MOLINA – PIURA”, A TRAVÉS DEL MÉTODO DE
VALORACION CONTINGENTE.

ECON. ELIAS AGUIRRE MENA
Presidente del Jurado

ECON. ELIAS CASTILLO CÓRDOVA
Secretario del Jurado

ECON. LINA TORRES RUIZ DE CASTILA
Vocal del Jurado

PIURA, MAYO 2015
ÍNDICE

INTRODUCCIÓN..002
RESUMEN..004
CAPITULO I MARCO TEÓRICO, INSTITUCIONAL Y LEGAL........005
 I.1 Agua...005
 I.1.1 Importancia del Agua..005
 I.2 Alcantarillado..006
 I.2.1 Importancia y utilización del Alcantarillado...007
 I.3 Teorías y estrategias del desarrollo sostenible..007
 I.4 Teoría de la utilidad y comportamiento del consumidor..................................008
 I.4.1 Leyes de preferencia..009
 I.4.2 Racionalidad y elección..009
 I.4.3 El problema de selección del consumidor y restricción presupuestaria.........010
 I.4.4 Las rutas de expansión del ingreso...011
 I.5 Teoría de la demanda..012
 I.5.1 Determinantes de la demanda..012
 I.5.2 Ley de demanda..012
 I.5.3 Efecto ingreso..012
 I.6 Monopolio..013
 I.6.1 Equilibrio del monopolista..013
 I.6.2 El monopolio natural...014
 I.6.3 El monopolio y barreras de entrada..016
 I.6.4 Regulación del monopolio..016
 I.6.4.1 El criterio de coste medio...017
 I.6.4.2 La regla de coste marginal...017
 I.7 Valoración económica total: costo y beneficios económicos............................017
 I.7.1 Valor de uso directo...019
 I.7.2 Valor de uso indirecto...020
 I.7.3 Valor de opción y valor de potencial..020
 I.8 Valoración económica del agua...021
 I.8.1 Métodos de valoración económica de los recursos naturales.....................023
 I.8.2 Método de valoración contingente...023
 I.8.3 Método de valoración contingente: La encuesta..025
 I.8.3.1 Contenido de la encuesta...025
 I.8.3.2 Problemas y sesgos en la encuesta..026
 I.9 El sector saneamiento...027
 I.9.1 Los servicios de saneamiento..027
 I.9.2 Organización del sector saneamiento...028
 I.9.2.1 En el ámbito rural..028
 I.9.2.2 En el ámbito urbano...029
 I.9.3 Principales obstáculos del sistema de alcantarillado..................................031
I.9.4 Marco legal del sector saneamiento..033
 I.9.4.1 Normas legales relativas a la creación y funciones de SUNASS........033
 I.9.4.2 Marco legal del sector (SUNASS)...033

CAPITULO II : GENERALIDADES DE LA DEMANDA DEL SERVICIO DE AGUA POTABLE Y ALCANTARILLADO..035

II.1 Demanda del servicio de agua potable..035
II.2 Información necesaria para un proyecto de ampliación de agua potable y alcantarillado ..036
 II.2.1 Información social...036
 II.2.2 Información técnica...037
II.3 Diseño de la demanda del servicio de agua...038
 II.3.1 Factores que afectan el consumo..038
 II.3.2 Demanda de dotación de agua..039
II.4 Grado de satisfacción de la demanda del servicio de agua potable.........040
II.5 El sector saneamiento...040

CAPITULO III CARACTERIZACION DEL A.A.H.H LA MOLINA I PIURA.................042

III.1 Población...043
 III.1.1 Nivel de Ingreso de la Población...043
 III.1.2 Educación...045
 III.1.3 Salud..047
III.2 Vivienda y servicios básicos...049
III.3 Situación actual de los servicios de agua y alcantarillado.....................050
 III.3.1 Servicio de Agua Potable...051
 III.3.2 Servicio de Alcantarillado...051

CAPITULO IV ANALISIS DEL PROYECTO DE INVERSION PUBLICA:
"MEJORAMIENTO Y AMPLIACION DE AGUA POTABLE Y ALCANTARILLADO DEL ASENTAMIENTO HUMANO LA MOLINA..............052

CAPITULO V DETERMINACION DE LA VALORACION ECONOMICA..69

V.1 Especificación del modelo..69
V.2 Hipótesis del Trabajo..71
V.3 Construcción del modelo logit y probit..74
 V.3.1 Regresiones univariantes...74
 V.3.2 Análisis de correlaciones...76
 V.3.3 Estimación del modelo logit y probit..78
<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.4</td>
<td>79</td>
</tr>
<tr>
<td>V.4.1 Evaluación estadística</td>
<td>79</td>
</tr>
<tr>
<td>V.4.2 Análisis de los residuos</td>
<td>80</td>
</tr>
<tr>
<td>V.4.3 Ajuste y predicción</td>
<td>82</td>
</tr>
<tr>
<td>V.5</td>
<td>82</td>
</tr>
<tr>
<td>EFECTOS MARGINALES</td>
<td></td>
</tr>
<tr>
<td>CAPITULO VI</td>
<td>86</td>
</tr>
<tr>
<td>IMPLICANCIAS DE POLITICA</td>
<td></td>
</tr>
<tr>
<td>CONCLUSIONES Y RECOMENDACIONES</td>
<td>87</td>
</tr>
<tr>
<td>BIBLIOGRAFÍA</td>
<td>89</td>
</tr>
<tr>
<td>ANEXO</td>
<td>91</td>
</tr>
<tr>
<td>ENCUESTA</td>
<td>92</td>
</tr>
</tbody>
</table>
DEDICATORIA

Esta tesis se la dedico a mi Dios quien supo guiarme por el buen camino, darme fuerzas para seguir adelante y no desmayar en los problemas que se presentaban, enseñándome a encarar las adversidades sin perder nunca la dignidad ni desfallecer en el intento.

Para mis padres por su apoyo, consejos, comprensión, amor, ayuda en los momentos difíciles, y por ayudarme con los recursos necesarios para estudiar. Me han dado todo lo que soy como persona, mis valores, mis principios, mi carácter, mi empeño, mi perseverancia, mi coraje para conseguir mis objetivos.

A mis hermanos por estar siempre presentes, acompañándome para poderme realizar.
INTRODUCCIÓN

El desarrollo de los pueblos se sustenta mediante el bienestar de la población, el cual se mide en términos económicos y sociales. Esta medición se realiza en forma económica cuando los ingresos que poseen las familias son suficientes para satisfacer las necesidades básicas de todo ser humano, las cuales son: alimentación, vivienda, educación y vestido; en cuanto se alcance a solucionar estas necesidades y lograr cierto nivel de bienestar tanto en el núcleo familiar como en el entorno social, se puede decir que se está alcanzando un cierto nivel de desarrollo social. En el entorno de las familias ubicadas en el Asentamiento Humano La Molina de la ciudad de Piura, la medición de los niveles económicos y sociales es fundamental para medir el grado de desarrollo de esta comunidad.

La cantidad de ingresos económicos que alcancen las familias va a establecer la disponibilidad de estos ingresos que son destinados a satisfacer una determinada necesidad familiar, permitiendo medir la disponibilidad económica familiar; de la misma forma en el entorno de este Asentamiento Humano no se puede hablar de desarrollo, por cuanto no existe la satisfacción de una de las necesidades primordiales de las familias, como es el agua potable y alcantarillado de las viviendas de esta localidad.

Es así, que el presente estudio tiene como objetivo central determinar la disponibilidad de pago de los habitantes del asentamiento humano La Molina para el mejoramiento de la calidad del consumo del agua y de un adecuado sistema de alcantarillado.

Del trabajo se concluye que, los entrevistados están dispuestos a pagar por la instalación del servicio de agua potable para mejorar su nivel de vida y disminuir la alta incidencia de enfermedades que existe en las localidades de estudio, así como también dejar una legado para las generaciones venideras. Asimismo, una de las variables observadas que tiene impacto sobre la disponibilidad a pagar (DAP) de las personas es el nivel de ingresos en su vivienda, esto daría a entender que para un hogar de nivel de ingresos alto debe haber mayor disponibilidad que en los hogares de menor ingreso, sin embargo en la práctica esto no sucede.
El presente trabajo está dividido de la siguiente manera. Primero se presenta el marco teórico relevante de acuerdo al tema de investigación, asimismo se presenta el marco institucional y legal de acuerdo al tema de investigación; en segundo lugar se citan las generalidades de la demanda del servicio de agua potable y alcantarillado que respaldan la presente investigación y poder determinar qué es lo que nos sirve de estas, y así aplicarlas al estudio; en tercer lugar se presenta la caracterización de la zona en donde se realizará dicho estudio, en cuarto lugar se realiza el respectivo análisis del proyecto de inversión Pública “Mejoramiento y Ampliación de Agua Potable y Alcantarillado del Asentamiento Humano La Molina”; en quinto lugar se determina la valoración económica del proyecto de inversión pública en base a la información recopilada mediante encuestas; en sexto lugar se presentan las implicancias de política, seguido de las conclusiones, bibliografía y anexo respectivo.
RESUMEN

Para determinar la disponibilidad de pago en términos del mejoramiento de la calidad del consumo del agua de los habitantes del asentamiento humano La Molina.

Se estimó el modelo Probit según el Método de la Valoración Contingente, el cual permitió, a través de la aplicación de 234 encuestas a posibles beneficiarios de la mejora en la calidad del agua, obtener el valor económico que tiene para el individuo promedio el beneficio que le generaría el mejoramiento y ampliación del sistema de agua potable y alcantarillado.

El 66% del total de entrevistados estarían dispuestos a pagar por el mejoramiento y ampliación de agua potable y alcantarillado en términos de la calidad de agua consumida pues consideran importante que el sector privado participe en la puesta en marcha de los proyectos sociales.

Los factores que afectan el abasto son, entre otros, los relacionados con los niveles de inversión, eficiencia y manejo de los sistemas de abasto; el uso de flujos de inversión aportados por la sociedad para la infraestructura, puede ayudar a que su efecto sea enfrentado y/o manejado. Entonces, un factor relevante para lograr que una sociedad alcance un determinado nivel de abasto es la inversión dedicada a este aspecto. La pregunta que se podría hacer es ¿Cuál es el nivel de inversión que la sociedad debe y quiere para enfrentar su problema de abasto?
CAPÍTULO I
MARCO TEÓRICO, INSTITUCIONAL Y LEGAL

En el presente capítulo se desarrollará el marco teórico que se sustenta en la economía del medio ambiente, teorías y estrategias del desarrollo sostenible, teoría de la utilidad, el comportamiento del consumidor y la ley de demanda.

I.1 Agua

Ball (2007,23) afirma que el agua es un bien de invaluable valor, por su importancia para la sociedad, considerándole un factor elemental para la sobrevivencia, lamentablemente cada día tenemos menos agua en nuestros hogares tanto en cantidad como calidad, asociado a esto hay factores ambientales, económicos y sociales.

El agua limpia y el saneamiento pueden promover u obstaculizar el desarrollo humano. Son dos aspectos fundamentales que influyen en lo que las personas pueden hacer o pueden devenir, esto es, en sus capacidades. El acceso al agua no es sólo un derecho humano fundamental y un indicador intrínsecamente importante del progreso humano, también es esencial para otros derechos y es una condición para alcanzar los grandes objetivos del desarrollo humano.

I.1.1 Importancia del agua

En un mundo con creciente escasez de agua, es cada vez más evidente la relevancia de esta para el desarrollo humano. El suministro deficiente de servicios básicos de agua y saneamiento acarrea un alto precio en vidas desperdiciadas y potencial humano perdido. Sin agua, la gente se muere, se enferma y se le cierran oportunidades para desarrollar su potencial. Sin acceso a agua, la amplia gama de derechos y libertades consagrados en la Declaración Universal de los Derechos Humanos1 de 1948.

La privación de agua y saneamiento conduce a la pobreza, la insalubridad, la mala nutrición, las inequidades de género y las asimetrías en el acceso a la educación, que niegan a las personas libertades y derechos fundamentales. En la medida que las acciones o las inacciones de los gobiernos contribuyen a esa escasez, violan también los principios

1 Incluyendo el derecho a la salud, a la alimentación y a una vida digna se ven sensiblemente disminuidos.
básicos de la justicia social así como los deberes y responsabilidades asociados con sus obligaciones en materia de derechos humanos.

La distribución del agua entre sus diferentes usuarios se constituye en factor fundamental en la distribución de oportunidades, en especial en sociedades donde la escasez del recurso impone serias restricciones al desarrollo. La equidad en el uso del agua también tiene un aspecto fundamental de equidad intergeneracional, relacionado con la noción de sostenibilidad de los recursos hídricos. Cuando el agua se usa en el presente de manera tal que compromete el bienestar de las generaciones futuras, se reproduce una situación de inequidad a través de la frontera generacional.

En tal sentido, el presente trabajo evaluará la disposición a pagar de los pobladores del AAHH La Molina por medio de la propuesta del proyecto de instalación de agua potable y alcantarillado en el asentamiento humano La Molina. Así también determinar la valoración económica mediante la estimación de disponibilidad a pagar (DAP) de los pobladores de la zona en estudio, utilizando el método de valoración económica.

I.2 Alcantarillado

Se denomina alcantarillado o también red de alcantarillado, red de saneamiento o red de drenaje al sistema de estructuras y tuberías usado para la recogida y transporte de las aguas residuales y pluviales una población desde el lugar en que se generan hasta el sitio en que se vierten al medio natural o se tratan para su consumo.

La red de alcantarillado se considera un servicio básico, sin embargo la cobertura de estas redes en las ciudades de países en desarrollo es ínfima en relación con la cobertura de las redes de agua potable, esto genera importantes problemas sanitarios. Durante mucho tiempo, la preocupación de las autoridades municipales o departamentales estaba más ocupada en construir redes de agua potable, dejando para un futuro indefinido la construcción de las redes de alcantarillado. Actualmente las redes de alcantarillado son un requisito para aprobar la construcción de nuevas urbanizaciones en la mayoría de las naciones.

2 Los servicios básicos en la vivienda son muy importantes para el entorno en el que las personas interactúan y se desarrollan.
1.2.1 Importancia y utilización del alcantarillado

La importancia del alcantarillado es equiparable con la necesidad de agua potable. Ya que la ausencia de una red de captación de residuos provoca que las fosas se desborden de manera rápida, se ocasiona la contaminación del manto freático y los residuales circulan por las calles. De aquí la necesidad de realizar las obras en conjunto.

La importancia sanitaria radica en el control y prevención de enfermedades y en los mejoramientos de las condiciones de vida y de seguridad de los habitantes. Económicamente, propicia la creación y desarrollo de la industria de manera racional. Conserva recursos hídricos naturales al evitar la contaminación excesiva, conserva las calles en bien estado, facilita el tránsito, se combate la acción erosiva de la lluvia y se evitan inundaciones y encharcamientos.

1.3 Teorías y estrategias del desarrollo sostenible

La idea de Desarrollo Sostenible tuvo sus inicios en 1972, en la primera reunión mundial sobre medio ambiente “Conferencia sobre el Medio Humano”. Sin embargo, no es sino hasta 1992 en la declaración sobre el Medio Ambiente y Desarrollo, en la cumbre de Río de Janeiro – Brasil, donde se aseveró que el logro del desarrollo económico a largo plazo está necesariamente vinculado con el medio ambiente.

Raymundo Florín (1999,56), sostiene que el desarrollo sostenible también considera la equidad como un aspecto necesario para abordar globalmente con equilibrio un crecimiento económico en relación a un uso adecuado del medio ambiente. Así, Enkerlin; E. (1997, 497), expresa que “El desarrollo hasta nuestros días se ha caracterizado por el predominio de la tendencia hacia la máxima rentabilidad a corto plazo en cuanto al uso de los recursos naturales. Esto se debe, en parte, al marco de referencia actual representado por los sistemas económicos que privilegian la rentabilidad inmediata, en detrimento de la planeación de largo plazo. Entre más rápido se conviertan los recursos naturales en dinero la rentabilidad será mayor.

El desarrollo no solo implica la coordinación de políticas mundiales en un mundo globalizado, sino que también depende de las características ecológicas, sociales y económicas de cada nación, de modo que exista sostenibilidad ecológicas, sostenibilidad

3 Implica mantener las características del ecosistema necesarias para el desarrollo a largo plazo.
social y sostenibilidad económica. Ante la evidencia empírica de los problemas de sobreexplotación de recursos naturales y degradación ambiental, en los países en vía de desarrollo, la pregunta central que requiere explicación según diversos autores como, Enkerlin, Cano y Vogel (1997,511).

En este contexto Florín, R. (1999,57), sostiene que la problemática del desarrollo sostenible a escala global, es la interrelación entre el capital humano, dinámica de los mercados y política fiscal. La explicación radica en que el capital humano es el motor del crecimiento y desarrollo de un país, su nivel de educación y la inversión en formación de este capital es condición necesaria para el crecimiento económico y bienestar social. Así, la estrategia de desarrollo debe estar articulado al diseño de Políticas económicas - ambientales de efectos de corto y largo plazo, con fundamentos de teoría micro y macroeconómica, que implique una eficiente asignación de recursos en la inversión en capital humano, capital físico y capital natural, que tiendan a generar un crecimiento económico, equitativo y con costos ambientales internalizados 4.

El desarrollo humano sostenible 5, debe, por una parte, posibilitar que todos los individuos aumenten su capacidad humana en forma plena y den a esa capacidad el mejor uso: económico, cultural, político, social, ambiental, etc., y por otra, crear oportunidades que puedan ampliarse para las generaciones presentes y futuras. Fomentar la libertad y la potenciación de las capacidades de la gente, generar pleno empleo y seguridad de vida, distribuir los beneficios equitativamente, promover la cohesión social, la cooperación y asegurar el desarrollo humano futuro son los objetivos del nuevo paradigma.

I.4 Teoría de la utilidad y comportamiento del consumidor

Lo que manifiesta Jack Hirshleifer – Amahay Glazer (1994, 610); por el principio de utilidad se entiende aquel que aprueba y desaprueba cada acción, sea la que sea. Los individuos son capaces de ordenar todas las situaciones posibles del menos a las más deseables. A esta ordenación los economistas denominan utilidad.

En todo sistema económico el individuo es consumidor porque demanda toda una variedad de bienes y servicios de consumo que le reportan un bienestar.

4 Colocándonos en la senda de un nuevo paradigma de "Desarrollo humano sostenible"
5 De lo anterior, se puede afirmar que la estrategia de desarrollo afecta la estructura de producción doméstica, la tecnológica.
1.4.1 Leyes de preferencia

Todos los bienes reportan alguna satisfacción a los consumidores. El análisis científico utiliza teorías de preferencia. Estos están basados por dos axiomas: a) Axioma de comparación: Cada individuo puede comparar cualquier de las 2 canastas de bienes distintos A y B. b) Axioma de transitividad: Considere las canastas A, B y C. Si el consumidor prefiere la canasta “A” en relación a la canasta “B” y prefiere la canasta “B” a la “C”; entonces él prefiere “A” en relación a la “C”. Estas dos leyes juntas implican la Función de Preferencia donde el individuo puede clasificar todas las canastas de consumo concebibles en orden de preferencia.

1.4.2 Racionalidad y elección

Kreps (1985,85), manifiesta que la racionalidad en economía implica, que el consumidor al tomar decisiones trata de conseguir entre las canastas, la que puede adquirir de acuerdo a su presupuesto. Los postulados de comparación, transitividad y conjunto asequible son necesarios para permitir a los individuos realizar la selección.6

Francisco Mochon y Alfonso Pajuelo (2010,215), determina que el problema de optimización tiene por finalidad determinar cuál es la mejor alternativa de entre varias canastas que están al alcance. Todos los problemas de optimización tienen tres elementos básicos: Las variables de elección. 2) La función objetivo. 3) El conjunto asequible.

Para el consumidor la variable de elección son las cantidades de bienes; la función objetivo proporciona una relación entre las cantidades consumidas de bienes y un índice de utilidad que representa las preferencias del consumidor. El conjunto asequible son las diferentes alternativas que están disponibles para que el individuo tome decisiones. La optimización se asocia con un comportamiento racional por parte de los individuos. Este comportamiento racional se plasma en última instancia en la decisión tomada. Cuando una persona prefiere la canasta “A” en relación a la canasta “B”, esto quiere decir que se siente mejor en la situación “A” que en la situación “B” (Gráfico N° 1.1). El individuo ha tomado una decisión racional.

6 El problema de optimización tiene por finalidad determinar cuál es la mejor alternativa de entre varias canastas que están al alcance.
1.4.3 El problema de selección del consumidor y restricción presupuestaria

De acuerdo a Kafka Floque (1985, 206), manifiesta que el consumidor se enfrenta al mercado como demandante al tener que decidir cómo gastar su ingreso en bienes y servicios. La teoría del consumidor se ocupa de la forma en que los consumidores eligen la mejor canasta dentro de las que pueden adquirir. Todos los consumidores enfrentan una restricción presupuestaria que acorta las posibilidades de elección. La restricción presupuestaria define el conjunto presupuestario, es decir, todas aquellas canastas de bienes que son asequibles para el consumidor, dada la renta disponible. Por lo tanto el consumidor no puede excederse en un gasto. Si un consumidor gasta todo su ingreso en los bienes X y Y se mantiene la siguiente ecuación:

\[X \cdot P_x + Y \cdot P_y = I_0 \]

Donde: \(X = \) es la cantidad del bien \(x \); \(P_x = \) es el precio del bien \(x \); \(Y = \) cantidad del bien \(y \); \(P_y = \) es el precio del bien \(y \); \(I_0 = \) Ingreso disponible.

Si el consumidor no gasta todo su ingreso en bienes se tiene la siguiente ecuación:

\[X \cdot P_x + Y \cdot P_y \leq I_0 \]

La restricción presupuestaria (K.L) acorta las posibilidades de elección ya que los precios de bienes y la renta están dados.

Gráfico N° 1.1

RESTRICCIÓN PRESUPUESTARIA Y CURVAS DE INDIFERENCIA

![Gráfico de restricción presupuestaria]

Fuente: Richard Bilas - "Teoría Microeconómica", 1978

\[^7 \text{Sabiendo que el ingreso del consumidor se encuentra limitado.} \]
El triángulo sombreado muestra todas las canastas consistentes en bienes X (alimentos) y Y (vestidos), que un consumidor con un ingreso dado puede pagar. (Conjunto de oportunidades).

La curva de indiferencia U_2 es la más alta que pueda alcanzar, es aquella que toca la restricción presupuestaria. El punto en que la curva de indiferencia y la restricción presupuestaria se tocan y se llama óptimo del consumidor. El consumidor prefiere el punto A, pero no puede adquirir ese bien porque se encuentra por encima de su restricción presupuestaria. Puede permitirse el punto “C” pero esa curva de indiferencia se encuentra más baja que el presupuesto por lo que se reporta menos satisfacción que la curva de indiferencia (U_2), en el punto “B”.

I.4.4 Las rutas de expansión del ingreso

Si el ingreso se incrementa mientras que todos los precios permanecen constantes. La línea de presupuesto se desplaza en dirección nordeste paralelamente así mismo.

Para aplicar la ruta de expansión del ingreso utilizamos el gráfico 1.2, este muestra la restricción presupuestaria K que se desplaza hacia afuera a K^1 a K^2.

Cada línea de presupuesto representa cambios en el ingreso del individuo enfrentando el mismo grupo de precios para los dos bienes: X e Y. El consumidor durante cada periodo de remuneración recibe un ingreso superior a K, recibiendo K^1 pero los precios se mantienen constantes entonces el óptimo del consumidor se incrementa de U_1 a U_2. La renta de expansión del ingreso (REI) muestra todos los paquetes de consumo óptimos que a medida que el ingreso aumenta, con precios que permanecen iguales.
1.5 **Teoría de la demanda**

Demanda es la cantidad de un bien que se desea adquirir por unidad de tiempo. De acuerdo con la teoría del consumidor. La elección óptima depende de sus preferencias, de los precios y la renta monetaria.

1.5.1 Determinantes de la demanda

Case Karl (1997, 59) considera que los determinantes básicos de la cantidad de un bien o servicio que demanda una familia en forma individual son: a) Precios del bien (PX), b) Ingreso disponible (I), c) Los precios de otros bienes disponibles de la familia (Ps), d) Los gustos y preferencias de la familia (G) y; e) Las expectativas de la familia en cuanto al ingreso y precio futuro (E).

La función demanda se puede expresar de la siguiente forma:

\[X_d = D (P_X, I, P_s, G, E) \]

1.5.2 Ley de demanda

Una característica de la demanda es que cuando los precios disminuyen la cantidad demandada aumenta. Lo contrario sucede cuando aumentan los precios. A esto se le denomina “Ley de demanda”

1.5.3 Efecto ingreso

Sanuelson y Nordhaus (2005, 275), considera que es el impacto que una variación en el precio de un producto genera en el ingreso real del consumidor y en consecuencia en el producto demandado. Si aumenta el precio de un producto por ejemplo, la carne, se reduce el ingreso real o poder adquisitivo de cualquier individuo; esta reducción del ingreso real se reflejará en una reducción de las compras de muchos productos. Lo contrario ocurre cuando se reduce el precio de un producto, la persona podrá adquirir mayor cantidad del bien sin renunciar a otro bien. Esta reducción del precio del producto

8 La demanda se define como la cantidad y calidad de bienes y servicios que pueden ser adquiridos en los diferentes precios del mercado por un consumidor.

9 La teoría del consumidor se ocupa de estudiar el comportamiento del agente económico consumidor en el momento de decidir cuánto consumir y cómo consumir.

10 Efecto renta o ingreso de la variación de un precio es la parte del ajuste de la cantidad demandada que depende de la variación de la renta real.
incrementa el poder de compra del ingreso monetario permitiendo a la persona comprar mayor cantidad del producto que antes.

1.6 Monopolio

La existencia del monopolio se caracteriza porque hay una sola empresa. El monopolio se basa en: a) La existencia de un solo productor, b) La existencia de barreras en la entrada al mercado y c) La existencia de muchos demandantes no organizados. El fin de la empresa monopolística es la maximización de los beneficios. El monopolista goza de “beneficios extraordinarios”. Estos se logran cuando el costo marginal es igual al ingreso marginal.

1.6.1 Equilibrio del monopolista

Según Kafka Floke (1985, 71), considera que la condición que permite el nivel de producción que maximiza los beneficios es cuando el ingreso marginal es igual al costo marginal. En el monopolio la relación entre el ingreso marginal y el precio adopta la forma siguiente:

\[\text{Img} = P \left(\frac{1}{e} \right) \]

Donde: \(e \) = es la elasticidad precio de la demanda, \(\text{Img} \) = es el ingreso marginal y \(P \) = es el precio del bien.

El Índice de Lerner, describe la capacidad de control sobre un mercado (o poder del mercado) de una empresa. El índice asume mayor control sobre el mercado que una empresa tenga, el precio de sus productos serán superiores a los precios existentes en el caso de un mercado en competencia perfecta. El índice de Lerner es equivalente al valor negativo del inverso de la fórmula de elasticidad de la demanda en relación al precio \(e \) que confronta a la empresa cuando el precio \(P \) es escogido para maximizar la ganancia tomando en cuenta la existencia de ese poder del mercado.
Gráfico Nº 1.3
ANÁLISIS GRÁFICO DEL EQUILIBRIO DEL MONOPOLIO

En el gráfico N° 1.3 representa la situación de equilibrio del monopolista de acuerdo con el criterio de maximización de beneficio. La intersección de la curva de coste marginal (CM) y el ingreso marginal (IM) permite determinar el nivel de producción óptimo y el precio al que la demanda del mercado estará dispuesto a absorber dicha producción. El gráfico muestra que el nivel de producción óptimo habrá de estar siempre a la izquierda de la intersección del ingreso marginal con el eje de las abscisas.

El nivel de producción del monopolista que maximiza sus beneficios se determina un nivel de producción \(q^* \) que, de acuerdo con las curvas de demanda del mercado, será absorbida a un precio \(p^* \). Puesto que todas las unidades han de venderse a un mismo precio, el precio de equilibrio en el monopolio (es el coste marginal).

1.6.2 El monopolio natural

Un monopolio natural es un caso particular de los monopolios en el cual una empresa puede generar toda la producción del mercado con un coste menor que si hubiera varias empresas compitiendo.

Esto usualmente ocurre en mercados en los cuales se tiene que realizar una altísima inversión inicial para ingresar, junto a elevados costos de mantenimiento de la estructura productiva para atender un mercado que, adicionalmente, es limitado. Así, los incentivos para que firmas adicionales a la primera ingresen en el mercado son bajos, dado que los costos totales necesarios no disminuyen mientras que, al mismo tiempo y en
el mejor de los casos, solo se podría servir una parte de dicho mercado. Además, esta participación de empresas adicionales también sería ineficiente: la replicación de las estructuras industriales no conduce necesariamente a una mejora ya sea en la cantidad o en la calidad del producto. Por ejemplo, el hecho de que se doble el número de empresas que proveen alcantarillado -o aún peor, el doblar la red de alcantarillado- en un lugar donde ya existe no conduciría a una mejora en servicios sanitarios, pero incrementaría los costos. En otras palabras, resulta más eficiente que sólo haya una empresa en el sector, puesto que los costes medios tienden a bajar según aumentamos la productividad de lo invertido, ayudando al monopolista a bajar el precio.

Si bien el monopolio natural tiene también cautivos a sus consumidores, a diferencia de uno clásico es socialmente eficiente. Un ejemplo de ello es la distribución de agua potable en las ciudades. Asimismo, la distribución de agua potable hoy en día también se puede dar bajo un esquema de competencia parcial, donde las empresas que brindan ese servicio lo hacen a nivel de regiones, compitiendo bajo un sistema regulado (en asuntos de calidad, etc.) para negociar con las autoridades. Al mismo tiempo, otorgan, en algunos casos. Otros servicios a los usuarios (incluyendo municipalidades y ayuntamientos, entre otros) tales como tratamiento de aguas servidas, servicios de gas o electricidad.

Gráfico N° 1.4
ANÁLISIS GRÁFICO DEL MONOPOLIO NATURAL

Fuente: Kafka Floke - "Teoría Económica". 1985
1.6.3 El monopolio y barreras de entrada

Los beneficios extraordinarios que obtiene el monopolista inducirán a la entrada de nuevas empresas en la industria hasta que el precio se reduzca a un nivel competitivo a largo plazo en el que el precio sea igual al costo medio a largo plazo. (CMEL). El poder del monopolista solo puede persistir si existen barreras naturales o barreras artificiales de entrada a la industria.

Por barreras naturales se entienden aquellas que surgen debido a las características tecnológicas de la industria. Una barrera natural lo constituye por ejemplo: la existencia de rendimientos crecientes a escala en una industria, que permite que las grandes empresas desplacen a los pequeños competidores potenciales haciendo que la entrada no sea rentable. Las barreras artificiales son las que dependen de las instituciones sociales y políticas. Este tipo de barreras administrativas otorgadas por un organismo público y el control de una fuente de materias primas.

1.6.4 Regulación del monopolio

La regulación del monopolio se desarrolla en base a la legislación en defensa de la competencia (o legislación anti-monopolio); la regulación de los precios y el establecimiento de impuestos. En el caso de regulación de precios caben dos criterios a seguir para determinar el precio máximo que debe fijar el monopolio: El criterio de coste medio y la regla de coste marginal.

Gráfico N° 1.5

ANÁLISIS GRÁFICO DE COSTE MEDIO Y COSTE MARGINAL

Fuente: Kafka Flore - "Teoría Económica", 1985
1.6.4.1 El criterio de coste medio

Las autoridades económicas desean eliminar los beneficios que obtiene el monopolista para ello le obligan a establecer un precio que sea igual al coste medio. Es decir, que el precio fijado es igual al coste medio. Este precio, es inferior al precio fijado en el mercado competitivo, siendo mayor el nivel de producción. Una importante limitación de esta forma de regular los monopolios es que las empresas reguladoras no tienen incentivos para reducir sus costes de producción.

1.6.4.2 La regla de coste marginal

El criterio de fijación de precios que se impone al monopolista es el de coste marginal, de forma que el precio se establece al nivel correspondiente a la intersección de la curva de demanda y la curva de costes marginales. Al monopolista se le exige, además que produzca toda la cantidad que se demanda a ese precio, de forma que la cantidad lanzada al mercado será socialmente óptima. Este criterio, sin embargo, plantea problemas tal es el caso de monopolios naturales ay que conduce a la empresa a producir con pérdidas.

Ello se debe a que la curva de costes medios será una función decreciente del nivel de producción, y la curva de costes marginales será siempre inferior a la de costes medios. Por esta razón se suele optar el criterio del coste medio.

1.7 Valoración económica total: costos y beneficios económicos

Según Pearce; D. (1995,67), sostiene que la valoración del bien o el valor económico, en la toma de decisiones sobre medio ambiente, debería permitir identificar o aproximarnos al óptimo. Los economistas del medio ambiente han realizado avances considerables hacia una taxonomía de los valores económicos en función de cómo se relacionan con el medio ambiente. El valor económico total (VET), se puede expresar con la suma de los valores de uso actual (VUA), valor de opción (VO) y valor de existencia (VE):

\[VET = VUA + VO + VE \]
El valor de uso, se clasifica en valor de uso actual (VUA) y valor de opción. Valor de uso actual, se derivan del uso real del medio ambiente. El valor de opción, está relacionado al valor del medio ambiente como un beneficio potencial frente al valor del uso en sí mismo. Se trata de la expresión de una preferencia, una disposición a pagar por la conservación de un ambiente frente a alguna posibilidad de que el individuo se convierta en usuario del mismo en algún momento futuro.

Los valores de existencia, están relacionados al valor intrínseco, y no está relacionado con el uso, o valor de uso actual o potencial. Un valor que reside en algo, pero que las personas captan y expresan a través de sus preferencias en la forma de un valor de no uso. Al respecto, Pérez, O. (2000, 88), define el Valor Económico Total (VET) como el agregado de tres valores de uso (directo, indirecto y potencial), con el valor de no uso o de existencia, expresado de la siguiente manera:

\[
\text{VET} = \text{Valor de uso directo} + \text{Valor de uso Indirecto} \times \text{Valor Potencial} \\
+ \text{Valor de existencia}
\]

El VET de los recursos y ecosistemas naturales, según Kriström (1995,34), está representado por todos los beneficios de bienes y servicios que se derivan de los recursos naturales, sean estos transables o no en el mercado, incluyendo el valor propio de la naturaleza que no depende del hombre. Este enfoque según el autor, presenta las dificultades en su aplicación, debido a que requiere de un alto nivel de información y análisis. Incluyendo, además del mercado, el sistema informal de autoconsumo y el de trueque / intercambio de productos, los beneficios de las funciones ambientales del ecosistema y el valor de la diversidad biológica en función a ella misma.

Según manifiesta Barry (1995, 22), en el contexto de la teoría neoclásica se analiza la estructura de costos privados, incorporando en ellos el costo de oportunidad y además se postula que la condición de maximización de beneficios se produce donde el ingreso marginal en igual al costo marginal en su tramo creciente. En este punto la empresa obtendrá el máximo nivel de beneficios posible o minimizara sus pérdidas (competencia perfecta).
Pearce. D. (1995,78), sostiene que no se debe olvidar el contexto en el que se tiende a buscar VET. En muchos de estos contextos están presentes tres factores: Irreversibilidad. Si no se presenta el activo, es probable que se elimine con muy poca o ninguna posibilidad de regeneración. Incertidumbre. No se conoce el futuro, por lo que puede haber costos potenciales si se elimina el activo y desaparece una opción futura. Singularidad. Al medirse los valores de existencia, tiende a relacionarse especies en peligro y paisajes únicos, por ende se verá favorecida la preservación frente a la explotación. Por ende, dentro de esta ecuación, el Valor de Opción se puede decir que es igual a:

\[VO = \text{Valor de Uso (por Individuo)} \]

\[+ \text{Valor de uso por individuos futuros (generaciones futuras)} \]

\[+ \text{Valor de uso por otros (Valor indirecto por el individuo)} \]

1.7.1 Valor de uso directo

El Valor de Uso Directo (VUD), según Guzmán. W. (1996, 35), es el que se deriva de la utilización de los recursos biológicos tanto al estado natural como de los productos de su transformación mecánica, física o química y de los servicios generados como el ecoturismo y la educación. Como ejemplo de estas dos grandes vertientes de uso directo de un ecosistema tropical se tiene: a) Productos y servicios comercializados en el mercado, el valor económico se puede estimar con el método de precios de mercado cuando este funciona sin distorsiones. Y con el método de precios de eficiencia cuando existen distorsiones en el mercado. b) Bienes económicos pertenecientes a los sistemas de autoconsumo y trueque. Para estimar el valor se emplea, el enfoque de bienes conexos, tales como los métodos de intercambio basado en el trueque, sustitución directa y sustitución indirecta.

Este método considera las ganancias ambientales y trata de medir directamente su valor monetario. Este se puede hacer buscando un mercado sustitutivo o por medio de técnicas experimentales. El enfoque del mercado sustitutivo trata de encontrar un mercado en el que se compran y vendan bienes o factores de producción. Mientras que el enfoque experimental simula un mercado sobre la base de colocar a los encuestados en

I.7.2 Valor de uso indirecto

El valor de uso indirecto (VUI), según Pérez (2000,56), se refiere a los beneficios derivados de las funciones ambientales o ecológicas de los recursos naturales renovables como de los ecosistemas tanto naturales renovables como de los ecosistemas tanto naturales como establecidos. Sin embargo, la determinación del valor de usos indirecto de las funciones ambientales presenta una serie de dificultades que obedece principalmente a lo siguiente: a) Un escaso conocimiento de cómo funcionan los ecosistemas. b) Ausencia del mercado para los beneficios ambientales.

Entre los métodos para estimar el valor indirecto según el autor de los ecosistemas, se tiene en de los costos de reposición de los recursos naturales y el de la recuperación de las funciones ambientales y daños por alteraciones al ecosistema. En todos estos casos se estima la inversión y los gastos que demandarían recuperar la calidad ambiental de los ecosistemas alterados por la acción humana.

I.7.3 Valor de opción y valor potencial

El valor de opción (VO), según Pérez. O. (2000,57), representa un beneficio potencial de los recursos naturales se interpreta como el pago anticipado que una persona realiza con el propósito de asegurarse en el futuro como una especie de riesgo por el cual una persona / agente productivo paga por encima del valor de uso esperado, siendo este el resultado de las expectativas e incertidumbre del agente productor sobre la actividad futura. Al respecto Pearce y Turner (1995,44), expresan que el VO, es el pago que se hace para asegurar la disponibilidad futura del hábitat de la vida silvestre.

De acuerdo a Pearce y Turner (1995,44), el VO se puede aplicar cuando todavía no se obtienen beneficios; como por ejemplo en la biodiversidad. Y uno de los pocos métodos disponibles para estimar los valores de opción es el método de valoración de contingencia. Este método simula la existencia de un mercado y busca que los agentes productivos revelen sus preferencias mediante encuestas previamente estructuradas y dirigidas a conocer el monto que los actuales usuarios estarían dispuestos a pagar para
reservarse los beneficios futuros provenientes del ecosistema o los afectados estarían dispuestos a recibir a cambio de los efectos de la contaminación.

Frente a estas limitaciones para estimar el potencial de los recursos, de acuerdo a Pérez, O (2000,35), se presentan dos casos particulares de cómo ponderar el potencial económico del ecosistema: El primero consiste en valorar la biomasa total, forestal aprovechable, tomando como referencia los precios y valores actuales del recurso y el segundo en valorar el recurso en función a los beneficios económicos esperados por los resultados de las investigaciones.

I.8 Valoración económica del agua

Según Barrantes y Castro (1999, 77), para la valoración económica de recursos naturales multiatributos como el agua, los economistas consideran una clasificación de los distintos valores que dependen del uso del recurso. Para identificar las funciones que confieren valor al agua, debe considerarse el valor de uso directo e indirecto.

El valor de uso indirecto corresponde al valor que la sociedad le da al recurso por la función que éste cumple, por ejemplo, el valor que tiene el agua como hábitat de especies vivas, el valor del recurso por su capacidad de depuración o solvente de sustancias que entran en contacto con ella, el valor del agua por su papel en el ciclo de nutrientes necesarios para la vida, entre otros. El valor de opción del agua corresponde al valor que le da la sociedad al recurso por la opción de poder hacer uso o no del mismo en algún momento futuro.

Por el valor que posee el agua, y por su gestión clave para alcanzar el desarrollo sostenible, los siguientes principios deben tenerse en cuenta en toda política y estrategia para su gestión:

Eficiencia: la asignación de los recursos hídricos debe tomar en consideración el valor social, económico, ambiental y cultural de los mismos, para hacer su uso más eficiente. A su vez, es necesario coordinar los objetivos de desarrollo y de reducción de la pobreza, para que la asignación de dichos recursos cumpla también con los criterios de universalidad y de equidad.
Equidad: el hecho de que el agua cumpla un rol como bien ambiental, social y económico, implica que debe velarse especialmente por los derechos de los grupos más necesitados y vulnerables para acceder a ella. La asignación del agua para diferentes usos, y las políticas y prácticas para gestionar, suministrar y financiar este recurso, pueden crear incentivos y desincentivos para actividades económicas específicas; por lo tanto, se requiere de principios orientadores que promuevan una asignación eficiente del agua dentro de un marco de desarrollo sostenible y de erradicación de la pobreza.

Universalidad: privar a alguien del acceso al agua estaría violando un derecho humano reconocido por la comunidad de naciones. El agua, las instalaciones y los servicios de agua deben ser accesibles a todos, sin discriminación alguna. Esta accesibilidad presenta cuatro dimensiones: accesibilidad física, económica, no discriminación y acceso a la información. Además, para garantizar la sostenibilidad del acceso universal al agua, su distribución y asignaciones para su aprovechamiento.

Es por ello, que la ejecución y posterior puesta en funcionamiento del proyecto "Mejoramiento y ampliación del sistema de agua potable y construcción del sistema de alcantarillado del asentamiento humano La Molina", trae beneficios en el medio físico, y como consecuencia mejorará el medio ambiente, la salud y en el quehacer diario de las personas, así mismo habrá una mejora en la calidad del aire, del agua y el suelo.

La puesta en funcionamiento del proyecto traerá beneficios positivos en el medio ambiente, contribuyendo a mejorar la salud de la población y en la implementación de puestos de trabajo de mano de obra calificada y no calificada del distrito, la provincia y del departamento. El proyecto contempla la ejecución de obras que permitan dotar del servicio de agua potable, medida de prevención de mayor impacto positivo e incidencia directa en la salud de la población, mejorando la calidad de vida de la población.

Además los residuos producidos durante las labores de ejecución del proyecto, principalmente los excedentes de excavación, deberán disponerse en terrenos eriazos, alterando lo menos posible el entorno y donde no haya riesgo de derrumbes o deslizamientos. Igualmente durante la fase de operación, se debe garantizar la calidad del agua a través de labores de desinfección y control de calidad mediante análisis de muestras, tomadas en diferentes puntos de la red de distribución, los resultados deberán compararse con la norma de la Organización Mundial de la Salud (OMS).
1.8.1 Métodos de valoración económica de los recursos naturales

En una economía competitiva con un mecanismo de precios no distorsionado se puede suponer que los precios de mercado reflejan la disposición a pagar por los bienes y servicios. Por tanto, dichos precios deberían representar una medida fiel del valor de uso directo del recurso hídrico.

Según Azqueta (2002,83), los métodos que el análisis económico proporciona para la valoración del medio ambiente buscan descubrir qué importancia le concede una persona a las funciones que éste desempeña. Los principales métodos de valoración se pueden agrupar así: métodos directos, métodos indirectos, incluyendo el método de los costos de reposición, los métodos basados en la función de producción, el método del costo de viaje, el método de los precios hedónicos y los modelos de bienes sustitutos; por otra parte están los métodos directos o métodos de preferencias expresadas, principalmente el método de valoración contingente y sus variantes. También es posible hacer uso de métodos de valoración basados en costos.

1.8.2 Método de valoración contingente

El método de valoración contingente (MVC) es una técnica de muestreo basado en la interrogación directa de personas mientras se hallan in situ o por correo para estimar su disposición a pagar por algo que valoran (en este caso, mejorar las oportunidades recreativas o mantener las existentes; conservar o proteger un área natural, etc...).

La valoración contingente es un método directo o hipotético que se fundamenta en la información que proporcionan las personas sobre la valoración del recurso natural. Es decir, su disponibilidad a pagar por un beneficio derivado de una política o proyecto ambiental. Este beneficio puede explicarse por una modificación en el bienestar que les produce un cambio en las condiciones de oferta de un recurso natural. Para capturar la disposición a pagar o la disposición a ser compensado, se utiliza la técnica directa estructurada, es decir; encuestas en muestras definidas con niveles de confianza pre-establecida.

La encuesta del presente trabajo de tesis está dividida en: i) la información sobre el recurso natural, ii) la calidad e importancia del recurso, y iii) las características socio económico de las personas encuestadas.
De igual manera Azqueta, D (1994, 58), sostiene que éste es un método directo e hipotético que se fundamenta en la información que proporcionan las personas sobre la valoración del Recurso Natural. Es decir, si disponibilidad a pagar por un beneficio derivado de una política ambiental. Este beneficio puede explicarse por una modificación en el bienestar que les produce un cambio en las condiciones de oferta de un recurso natural.

La ventaja del MVC, es que puede estimar valores de no uso, lo cual no pueden hacer los métodos indirectos. Otra ventaja es que no requiere ninguna estimación previa de la función de demanda, permite descubrir la compensación exigida para permitir un cambio que deteriora el bienestar o renunciar a uno que lo mejorará. Para el caso del presente trabajo de investigación el método de valoración contingente nos ayudará a averiguar los cambios en el bienestar de las personas ante cabios hipotéticos, en este caso de la puesta en marcha del proyecto de inversión pública “Mejoramiento y Ampliación de Agua Potable y Alcantarillado en el asentamiento humano La Molina” para ello se aplicará preguntas directas a dicha población sobre la apreciación de dicho proyecto de inversión.

Este método capta el valor económico total de un impacto ambiental. La mayor o menor aproximación del valor económico depende del conocimiento y percepción de los encuestados y del tipo de impacto estudiado. En cuanto a las desventajas, se refieren a la validez de la información proporcionada por el encuestado, su capacidad de poder responder con honradez y la calidad de respuesta deseada en el MVC, a diferencia de los métodos directos, no existe forma de comprobar que la información proporcionada se ajusta a la realidad, excepto cuando se lleve a cabo la implementación de la propuesta.

En tal sentido, dado que este método interesa capturar la “disposición a pagar” o la “disposición a aceptar compensación”, presentamos el marco teórico que utiliza la economía ambiental ecológica para explicar los conceptos mencionados. Evidentemente en el proceso de recopilación de la información primaria, se pueden encontrar varios sesgos y sus respuestas pueden presentar este problema. Para reducir estos sesgos es importante dar atención a la preparación de los encuestadores y el diseño del cuestionario con preguntas ordenadas congruentemente, utilizando palabras sencillas y comprensibles.
I.8.3 Método de valoración contingente: La encuesta

I.8.3.1 Contenido de la encuesta

Según Friofrío, M. (1997) describe las características generales del método de valoración contingente, cuya metodología se ha tenido en cuenta para el contenido de la encuesta del presente proyecto.

- **Detallada descripción del bien que se va a evaluar y las circunstancias hipotéticas que le son planteadas al encuestado**: Este punto debe incluir la construcción de un mercado modelo en detalle, que se le comunica al entrevistado en forma de escenario, debiendo ser leído al encuestado durante la entrevista. Este escenario debe describir claramente el bien, el nivel y la estructura bajo la cual se provee las características de los sustitutos y el método de pago. Así mismo cuáles son los efectos de estos cambios con el fin de que el entrevistado pueda valorarlos.

- **Debe Preguntar La DAP Por La Modificación Del Objeto**: Si bien es cierto algunos autores, WALSH (1996); BISHOP y HERBERLEIM (1979); recomiendan preguntar por la disposición a pagar por una mejora de la calidad del bien antes que preguntar por la disposición a aceptar por una disminución de la calidad. Esto porque la DAA tiende a sobreestimar el verdadero valor del bien. Otros como Pérez (2000) sustentan que este método busca obtener el valor del recurso, disposición a aceptar (DAA). Lo importante es que en este punto se debe tener cuidado al definir el vehículo de pago, con el fin de elegir el que presente la mayor probabilidad de entregar correctas evaluaciones de los encuestados. En este caso de los encuestados que no están dispuestos a responder por su DAP, por el cambio en la calidad del bien, o declaran no estar dispuestos a pagar, debe determinarse cuál es la razón de esta negativa, ya que el individuo no valore el bien o que no está de acuerdo con el mercado hipotético diseñado o con el vehículo de pago debido a consideraciones morales.

- **La encuesta debe incluir preguntas sobre las características de los encuestados que se consideran importantes como variables explicativas de las DAP**: Si la encuesta está bien diseñada y ampliamente aprobada, las respuestas sobre la valoración deberían ser válidas y las cantidades de DAP declaradas por los individuos se pueden usar para estimar los beneficios que genera el bien. La forma
de estimación dependerá de las especificaciones teóricas que se supongan y de las preguntas de la encuesta. La realidad de las estimaciones depende en parte del cuidado con que los encuestadores describan la naturaleza del mercado hipotético.

Con respecto al formato de las preguntas utilizadas se menciona lo siguiente:

- **Formato Subasta**: En este caso el entrevistado adelanta una cifra, a la cual las personas responden SI o No están dispuestos a pagar, el encuestador de acuerdo a la respuesta que obtiene conduce al entrevistado a una cantidad de DAP razonable.

- **Formato Binario**: En este caso se usa con el objeto de volver sobre la respuesta inicial dada por el entrevistado respecto a su disposición a pagar, es decir el entrevistado no se conforma con la primera respuesta, si no que entra en un juego iterativo con el cual una vez obtenida una respuesta, se vuelve a formular una pregunta. Su inconveniente es el de generar un clima en que el encuestado da una respuesta más estratégica que honesta, su ventaja es que obliga a éste a reflexionar con más cuidado su respuesta, aumenta la precisión y disminuye el tamaño muestral.

1.8.3.2 Problemas y sesgos en la encuesta

Basándose en Guzmán, W. (1996,54); los posibles problemas y sesgos se pueden apreciar en lo aplicación de la encuesta, se puede sostener: que el objetivo de obtener una respuesta informada y honesta por parte de los encuestados, presenta ciertos problemas en el diseño y aplicación de las encuestas.

Fundamentalmente se presentan problemas referidos a la información de partida que manejan los encuestados. El problema se presenta cuando los encuestados no entienden la información o no logran captar todos los beneficios que generaría una determinada mejora en la calidad ambiental, por tanto la valoración que el individuo declare (DAP), puede ser suficientemente honesta pero no servirá de mucho si desconoce todos los cambios que ésta mejora puede provocar. Esto exige que el diseño de la encuesta se considere de la mejor manera posible toda la información relevante para que el entrevistado pueda contestar con información sólida.

Otros de los problemas planteados por GUZMÁN, W. (1996,54); es el de tiempo. Éste tiene a su vez varias diferenciaciones, por su aparte es bastante obvio la necesidad
de equilibrar la entrega de información para la comprensión del problema con la paciencia del entrevistado, es decir no incentivar al entrevistado de modo que se vea más inclinado al responder cualquier cifra con el fin de terminar con la entrevista. Además se debe considerar el momento en que se efectuó la investigación y la aplicación; ya que la respuesta de DAP, varía en función al tiempo transcurrido.

I.9 El sector saneamiento

I.9.1 Los servicios de saneamiento

Los servicios de saneamiento son servicios de interés nacional. El propósito del sistema es satisfacer necesidades básicas de la población y la protección de la salud, tanto en la población de zonas urbanas como las poblaciones de zonas rurales. Su ausencia constituye uno de los indicadores para determinar la situación de pobreza de la población. Todo el mundo reconoce que un sistema adecuado de abastecimiento de agua para beber, fines domésticos, asearse y los medios adecuados de eliminación de aguas servidas (servicio de alcantarillado) son elementos esenciales para la salud y bienestar de los usuarios de este servicio.

El servicio de alcantarillado es un servicio urbano que comprende los sistemas de recolección (conexiones domiciliarias, sumideros, redes y emisores): Sistema de tratamiento y disposición de aguas servidas; Sistema de recolección de aguas de lluvia.

Según información del Diario El Peruano (1996, 16) El Servicio de Disposición Sanitaria de Excretas en el medio rural se realiza, generalmente, a través de fosas sépticas y de letrinas. Siendo el tiempo de duración de una letrina es de cinco años aproximadamente teniendo un uso y mantenimiento adecuado. Después de este tiempo debe clausurarse hacer otra fosa séptica.

Los servicios de saneamiento constituyen la prestación de los servicios de agua potable, alcantarillado sanitario y pluvial, la disposición de las excretas en áreas rurales y áreas urbanas:

De acuerdo a la directiva sobre Organización y Funcionamiento de Juntas Administradoras de servicios de Saneamiento11, se entiende por servicio de saneamiento rural a la organización comunal y al conjunto de instalaciones y equipos, destinados a

11 SUNASS. (07/1999). Resolución de Superintendencia Nº 643 – 99 Normas Legales tomo 278
satisfacer las necesidades colectivas de servicios de saneamiento de una población determinada.

1.9.2 Organización del sector saneamiento

1.9.2.1 En el ámbito rural

La evolución sufrida en el marco institucional de los servicios de saneamiento en el ámbito urbano se reflejó también en el ámbito rural. En efecto, a partir de 1962 cuando se promulga la Ley N° 13997, se encarga al Ministerio de Salud y se creó la Dirección de Saneamiento Básico Rural (DISABA). A través de este organismo se ejecutaron sistemas de agua potable y letrinas en el medio rural y se organizó a las comunidades rurales en Juntas Administradoras de Agua Potable (JAAP) para que administren el servicio. DISABAR se encargó de fiscalizar el funcionamiento de las Juntas Administradoras de Agua Potable, así como de fijar tarifas por los servicios de agua potable y alcantarillado. DISABAR, organizó sus actividades a través de 17 oficinas de Saneamiento Básico Rural. Al momento de la Regionalización estas oficinas pasaron a depender de la Secretarias de Asuntos Sociales de los Gobiernos Regionales. DISABAR quedó encargada solamente de la aún no formada Región Lima / Callao y de acciones de consultoría técnica en el resto del país.

En las zonas rurales con la finalidad de constituirse en agentes promotores y para que la población se organice y administre los servicios de saneamiento, en el año 1967 por D.S N° 110-67-DGS se reconoció oficialmente a la Juntas Administradoras de Agua Potable (JAAP), y se estableció que las Áreas de Salud llevarían un registro de las JAAP de su jurisdicción ejerciendo las funciones de supervisión y de fiscalización de las mismas. En 1976 se elaboró un modelo de estatuto para la JAAP que sirvió de base para su funcionamiento. Actualmente muchas de ellas lo siguen utilizando.

Al crearse la SUNASS en diciembre de 1992, esta quedó encargada de la regulación y promoción del sector rural. Sin embargo, dada la dispersión y la limitada capacidad de las Juntas Administradoras, no ha sido posible establecer una regulación, mediante metas y estándares para dichas juntas. A pesar de ello se ha dado un avance importante en cuanto al ordenamiento organizacional de las Juntas, para lo cual la Superintendencia emitió la Con Resolución N° 643-99/ SUNASS “Aprueba Directiva
sobre Organización y Funcionamiento de Juntas Administradoras de Servicio de Saneamiento que establece los requisitos mínimos para conformar una Junta Administradora y dispone su inscripción.

I.9.2.2 En el ámbito urbano

A mediados de la década de los 80 y siguiendo también una tendencia similar a la de otros países de América Latina, se inicia un proceso de descentralización con la promulgación de las Leyes N° 23878 y 24650, junto con otras Leyes y Decretos relacionados, mediante los cuales el país quedo dividido en 12 regiones, de acuerdo con los preceptos de la constitución de 1979.

El proceso de regionalización no fue implementado en su totalidad, en particular debido a problemas jurídicos interpretativos y por falta de una adecuada legislación complementaria que definiera claramente las competencias y las relaciones entre el Gobierno Central, Las regiones y los Municipios; sin embargo, en el caso de los servicios de agua potable y alcantarillado a nivel urbano se produce, quizás de manera no claramente planificada, una transformación drástica. En efecto, en abril de 1990 el Decreto Legislativo N° 574, complementado por el Decreto Legislativo N° 601 dispone la transferencia de todas las empresas filiales y unidades operativa de SENAPA a la Municipalidades Provinciales y Distritales, y establece que SENAPA se convierta en una empresa encargada sólo de brindar asistencia técnica a dichas Municipalidades. Así mismo, los ámbitos urbano y rural quedan a cargo del ministerio de Vivienda y Construcción, y para el efecto se crea la Dirección de Saneamiento Básico, la misma que nunca llegó a implementarse.

La siguiente Constitución de 1993, vigente hasta la fecha, establece la responsabilidad de los Municipios en la prestación de los servicios públicos, mientras que a las regiones les corresponde la coordinación y ejecución de planes socio – económicos regionales. Así mismo, en el artículo N° 197 se establece que “Las regiones apoyan a los gobiernos locales. No los sustituyen ni duplican su acción ni su competencia”. Esto último queda en concordancia con las leyes de regionalización aún vigentes, las mismas

que no dan autoridad a las Regiones sobre la prestación de servicios de agua potable y alcantarillado, función que de acuerdo a la Ley Orgánica de Municipalidades (N° 23853) y la nueva Constitución, está asignada a los Gobiernos Municipales de nivel provincial.

En pleno proceso de descentralización, que según se ha indicado aún no ha ido complementado, aparecieron nuevos impulsos transformadores. En este marco se dieron una serie de acciones y dispositivos legales que hicieron necesarios algunos ajustes en el sector. A continuación se enumera las principales:

Decreto legislativo N° 697, de Noviembre de 1991, promueve la inversión privada en el campo de saneamiento, a nivel de explotación de los servicios, dejando la decisión del otorgamiento del correspondiente permiso a los Municipios.

En mayo de 1992 mediante Decreto Ley N° 25491 se dispone la fusión de los Ministerios de Vivienda y Construcción con el de Transportes. Como parte de este proceso SEDAPAL es transferida al Ministerio de la Presidencia, con lo cual queda desvinculada del resto del sector que pertenece en el Ministerio de Transportes.

En septiembre de 1992, mediante Decreto Ley N° 25738 se dispone que todas las funciones del Sector Saneamiento sean desarrolladas por el Vice ministerio de Infraestructura del Ministerio de la Presidencia, estableciéndose la transferencia de la Dirección General de Saneamiento Básico (no implementada), de la Unidad Ejecutora del Programa Nacional de Agua Potable y Alcantarillado – PRONAP – y de la Comisión de Tarifas de Agua Potable y Alcantarillado – CORTAPA.

En diciembre de 1992 mediante Decreto Ley N° 25965 se crea la Superintendencia Nacional de Servicios de Saneamiento como el organismo encargado de proponer las normas para la prestación de servicios de saneamiento, fiscalizar la prestación y promover el desarrollo de los mismos, así como resolver en última instancia los reclamos de los usuarios. Casi al mismo tiempo, mediante Decreto Ley N° 25973 se declara en disolución y liquidación a la empresa SENAPA.

En julio de 1994 se aprueba la ley N° 26338, Ley General de Servicios de Saneamiento, reglamentada mediante Decreto Supremo 09-95-PRES de agosto de 1995. Esta ley, vigente hasta la actualidad, establece las competencias de las instituciones involucradas en el sector, determina los deberes y derechos de los usuarios y las entidades
prestadoras, define el régimen tarifario, establece las condiciones y modalidades de la participación privada, entre otras cosas. Este periodo se ha caracterizado por una profunda transformación del sector y de las instituciones involucradas en él.

Por otro lado, la función reguladora del Estado en el sector saneamiento es también algo nuevo. Se ha requerido un tiempo para ganar experiencia, establecer el marco normativo y perfeccionar los mecanismos e instrumentos necesarios para la regulación y supervisión.

1.9.2.3 Situación actual del sector de saneamiento

Hasta fines de la década de los 90 la situación económica del Perú se deteriora. El estado ya no dispone de fondos para invertir en obras de saneamiento e incluso restringe la disponibilidad de fondos para aportar las contrapartidas requeridas para la obtención de préstamos de organismos internacionales. En estas circunstancias se comienza a dar una serie de dispositivos que pretenden reducir los problemas financieros de las empresas prestadoras y facilitar la participación del sector privado, como un mecanismo para conseguir la inversión requerida para mejorar y ampliar la infraestructura del sector. Entre las principales normas que han dado tenemos:

Ley Nº 27045, dada en enero de 1999, permite la extinción o condonación de las deudas que tenían pendientes los usuarios de los servicios de saneamiento con el FONA VI y establece un programa para regularizar las deudas de las empresas prestadoras con el FONA VI.

La ley Nº 27332, publicada en julio del 2000 en el Diario El Peruano (2000, 8), estandariza la forma en que se organizan internamente los Organismos Reguladores, precisa sus funciones, haciendo algunos cambios respecto a las normas anteriores, y establece un nuevo tope, para los recursos financieros que pueden percibir. En el caso de SUNASS esto ha significado una reducción en sus ingresos. Por otro lado la nueva ley elimina la función de promoción de la Superintendencia, que siempre fue ejercida de manera limitada debido a que no había consenso en el Gobierno respecto a su pertinencia;

y se eliminan las funciones de normar, fiscalizar y sancionar en los tema de saneamiento ambiental, calidad del agua potable y protección del medio ambiente.

Decreto Legislativo Nº 908 de agosto del 2000, Ley de Fomento y desarrollo del Sector Saneamiento. Establece un nuevo esquema de regulación para el sector y amplia las modalidades de participación del sector privado en saneamiento. Esta ley no ha sido reglamentada hasta la fecha, por lo que continúa vigente la Ley Nº 26338 y su reglamento, el Decreto Supremo 09-95-PRES.

Decreto Supremo Nº 124-2001-PCM, publicado en diciembre del 2001, establece normas para garantizar la transparencia en el procedimiento de fijación de precios regulados. Determina que la información utilizada por los organismos reguladores esté disponible para el público en general y obliga a la realización de una audiencia pública previa a la aprobación de precios para exponer los criterios, metodologías, estudios, etc.; que sirvieron para la determinación de las tarifas.

En los últimos años se han dado varias iniciativas para lograr un mayor acceso de la ciudadanía a la información y la uniformización de los organismos reguladores. Esta tendencia es coherente con el objetivo de lograr mayor apertura y confianza de los inversionistas potenciales, incluyendo los gobiernos extranjeros y los organismos multilaterales.

1.9.3 Principales obstáculos del sistema de alcantarillado

El Sistema de Saneamiento presenta numerosos obstáculos que se oponen a la mejora de la salud. La organización Mundial de la Salud (OMS) consideró que los principales obstáculos del sistema de saneamiento son: a) Limitación de los recursos financieros. b) Insuficiencia del personal capacitado. c) Problema de funcionamiento y mantenimiento. d) Marco inadecuado para la recuperación de costos. e) Problema de logística. f) Marco institucional inapropiado. g) Servicio de abastecimiento de agua intermitente. h) falta de participación de las comunidades.
1.9.4 Marco legal del sector saneamiento

1.9.4.1 Normas legales relativas a la creación y funciones de SUNASS

- El Decreto Ley N° 25965 (Publicado el 19 de diciembre de 1992) Crea la Superintendencia Nacional de Servicios de Saneamiento. SUNASS

- Ley General de Servicios de Saneamiento Ley N° 26338 (Publicada el 28 de agosto de 1995).

- Reglamento de la Ley general de servicios de Saneamiento Decreto Supremo N° 09-95-pres (Publicado el 28 de agosto de 1995).

- Modifican Artículo del Reglamento de la Ley General de Servicios de Saneamiento decreto Supremo N° 015-96-pres (publicada el 23 de agosto de 1996).

- Modifican y precisan disposiciones del reglamento de la Ley General de Servicios de Saneamiento Decreto Supremo N° 013-98-PRES (Publicado el 29 de julio de 2000).

- Ley Marco de los Organismos Reguladores de la Inversión Privada en los Servicios Públicos Ley N° 27332 (Publicada el 29 de julio de 2000)

- Modifican el Reglamento General de la Superintendencia Nacional de Servicios de Saneamiento Decreto Supremo N° 023-2002-pcm (Publicada el 04 de abril del 2002).

1.9.4.2 Marco legal del sector (SUNASS)

- Ley General de Servicios de Saneamiento, Ley N° 26338 y su reglamento D.S 09-95-PRES
- Normas referidas a la regulación tarifarias D.S 124-2001-PCM. Normas para garantizar la transparencia en el procedimiento de fijación de precios regulados, a fin que la información utilizada por los organismos Reguladores esté disponible a empresas y usuarios.

- Resolución de Superintendencia N° 179-96_SUNASS. Formulación de planes maestros.

- Resolución de Superintendencia N° 854-99-SUNASS. Modificación Directiva para la Formulación de Planes Maestros de las Entidades Prestadoras de Servicios de Saneamiento.

- Resolución de Superintendencia N° 150-99-SUNASS. Amplían plazo de la Etapa Preparatoria para las EPS Municipales que han sido incorporadas al Sistema Tarifario.

- Resolución de Superintendencia N° 240-2000-SUNASS. Amplían plazo de la etapa preparatoria del sistema tarifario para las empresas que aún no cuentan con fórmulas tarifarias aprobadas por la SUNASS.

- Resolución de Superintendencia N° 252-2000-SUNASS. Aprueban directiva para la Prestación de los planes financieros de las entidades de Servicios de Saneamiento.

- Resolución de Consejo Directivo N° 056-2001-SUNASS/CD. Modifican título de la “Directiva para la formulación de los planes maestros de las Entidades Prestadoras de Servicios de Saneamiento”

- Resolución de Consejo Directivo N° 008-2002-SUNASS/CD. Aprueban procedimientos de fijación de tarifas de las Empresas Prestadoras de Servicios de Saneamiento y su Exposición de Motivos.

- Resolución de Consejo Directivo N° 014-2002-SUNASS/CD. Aprueban Directiva de audiencias públicas previas a la fijación de tarifas de las Empresas Prestadoras de Servicios de Saneamiento.

- Normas referidas a la fiscalización Resolución N° 1178-99-SUNASS. Directiva de Fiscalización de las Empresas Prestadoras de Servicios de saneamiento.
CAPÍTULO II
GENERALIDADES DE LA DEMANDA DEL SERVICIO
DE AGUA POTABLE Y ALCANTARILLADO

II.1 Demanda del servicio de agua potable

Según versión expuesta en el Diario El Peruano del 23 de enero de 1999, se entiende por demanda del servicio de agua potable al volumen de agua que los distintos grupos de consumidores están dispuestos a utilizar bajo ciertas condiciones como precio del servicio, calidad del servicio, calidad del agua, la dotación o la demanda per cápita, esta expresada en litros/habitantes/día.

La demanda de agua potable no cumple con la siguiente proposición:

"Cuando el consumidor es demandante de un bien cuyo precio se reduce su bienestar aumenta"

Ya que una reducción de la tarifa de agua está relacionada directamente con un servicio de baja calidad y mínima cobertura del servicio. La demanda agregada actual se estima sobre la base de estudios realizados para cada uno de los diferentes grupos de consumidores debiendo considerarse no sólo a los actuales usuarios, sino también a los consumidores potenciales. La demanda agregada de agua potable será la sumatoria de las cantidades demandadas por los diferentes grupos de consumidores. La demanda de agua de los usuarios potenciales se estima asumiendo que su comportamiento de consumo de agua es similar a los usuarios con medidor.

En la estimación de la demanda de los actuales usuarios, no deberá confundirse "demanda de agua" con "consumo de agua" ni con "cantidad facturada". Se entiende por consumo a la porción de la demanda que es satisfecha, dadas las condiciones de oferta hecha por la "Empresa". Asimismo dadas las características del sistema de facturación, la cantidad facturada puede o no corresponder a la cantidad consumida.
II.2 Información necesaria para un proyecto de ampliación de agua potable y alcantarillado

Para determinar la factibilidad del proyecto de inversión de mejoramiento y ampliación de agua potable y alcantarillado se debe realizar actividades de reconocimiento de campo y recopilación de información básica necesaria para la elaboración de los estudios.

La información básica sobre la cantidad de la población que va a ser atendida, la disponibilidad de materiales locales, la existencia de fuentes de agua y cualquier otra información necesaria para llevar a cabo una investigación completa y obtener resultados precisos con finalidad de determinar si es factible o no el mejoramiento y ampliación del sistema de agua potable y alcantarillado. La información básica y necesaria es: a) La información social y b) Información técnica

II.2.1 Información social

Para la realización del estudio se consideran tres factores: a) Población. b) Nivel de organización de la población. c) Actividad económica.

a) La población

La población es la que determinará el requerimiento de agua (Demanda). Se considera que todas las personas utilizarán el sistema de agua potable y sistemas de alcantarillados a proyectarse siendo necesario para ello empadronar a todos los habitantes. Identificar en un croquis la ubicación de los lugares públicos y el número de viviendas por frente de calle y adicionalmente el número de personas que habitan en cada vivienda. Este será un padrón de usuarios para efectos de recoger los datos de la vivienda, con el apoyo de las autoridades y organizaciones.

b) Nivel de organización de la población

Para llevar a cabo este proyecto de mejoramiento y ampliación de agua potable y alcantarillado es indispensable conocer el entusiasmo, motivación y capacidad de la cooperación de la población. Para formarnos una idea del nivel de organización de la población es necesario recopilar información sobre anteriores experiencias de
participación de la comunidad en la solución de sus necesidades. Por ejemplo: en la construcción de escuelas, iglesias, identificando líderes (que tengan capacidad de organizar y estimular la participación de la comunidad).

c) Actividades

Es importante conocer la ocupación de los habitantes así como la disponibilidad de recursos (valor de la propiedad, etc.). Aprovechando la permanencia en la zona de estudio, se recopilará también la información sobre los jornales promedios, la mano de obra disponible, maestros de obra, albañiles, peones, etc. Además, se solicitará información sobre la manera en que la población contribuirá en la ejecución de la obra, tanto con aporte económico, material o mano de obra.

II.2.2 Información técnica

a) Investigación de la fuente de agua

Para realizar con éxito el estudio se debe recopilar información sobre el consumo actual, reconocimiento y selección de la fuente de agua.

a.1) Consumo actual

Es necesario conocer los usos que se le da al agua, así como el promedio de agua consumida por persona y la cantidad de agua total que abastece a la población. Esta información permitirá tener una idea para estimar la demanda de la población futura y ver la necesidad o no de implementar sistemas de abastecimiento de agua potable.

En la mayoría de las poblaciones del Perú se consume agua proveniente de ríos, quebradas, canales de regadíos y manantial sin protección ni tratamiento adecuado, no ofreciendo ninguna garantía y representan focos de contaminación que genera enfermedades y epidemias. A esta situación se suma que en las épocas de sequías disminuye o desaparece el agua y los habitantes se tienen que trasladar a fuentes distantes.

a.2) Reconocimiento de la fuente

La calidad de agua se analiza considerando que el agua es inodora, incolora y de sabor agradable. Luego de haber determinado la calidad de agua se necesita conocer la
cantidad existente con relación a la población que se requiere abastecer, es decir, determinar los requerimientos diarios de agua con la finalidad de verificar la cantidad mínima que se requiere captar. Verificar la existencia de pozos cercanos para poder realizar las conexiones pertinentes y poder satisfacer las necesidades de la población. Si esta fuente no puede cubrir las necesidades diarias de la población se debe buscar otra fuente o plantear un sistema que considere varias fuentes de abastecimiento.

Se evaluará la conveniencia de la fuente, según las posibilidades de contaminación, el potencial para la expansión futura, facilidades para construir la captación y la necesidad de protección de la estructura. Además es importante conocer la distancia y la ubicación de la fuente respecto al centro poblado en estudio.

II.3 Diseño de la demanda del servicio de agua

Las obras de agua potable no se diseñan para satisfacer sólo una necesidad del momento actual sino que prever el crecimiento de la población en un periodo de tiempo prudencial que varía entre diez y cuarenta años, siendo necesario estimar la población futura al final de este periodo para determinar la demanda de agua.

II.3.1 Factores que afectan el consumo

Los principales factores que afectan el consumo de agua son: factores económicos y factores sociales, factores climáticos y tamaño de la comunidad. Independientemente que la población sea urbana o rural, se debe considerar el consumo doméstico, el industrial, el comercial, el público y las perdidas. Las características económicas y sociales de la población pueden evidenciarse a través del tipo de vivienda, siendo importante la variación de consumo por el material de construcción. El consumo de agua varía también en función del clima, de acuerdo a la temperatura y la distribución de las lluvias, mientras que el consumo per cápita, varía en relación directa al tamaño de la comunidad.

II.3.2 Demanda de dotación de agua

La dotación de agua es el parámetro normativo de la cantidad promedio en litros de agua potable por habitante estipulado como necesario para satisfacer las necesidades cotidianas. La legislación peruana establece dotaciones mínimas, promedio per cápita, en función del tamaño de la población y del clima de la localidad respectiva. El Cuadro N° 2.1 indica la dotación de agua potable según el número de habitantes, aquí se especifica que las poblaciones pequeñas con menos de 500 habitantes tienen un consumo promedio de 60 litros por habitante en un día. Los centros poblados que tienen una población entre 500 y 1000 habitantes tienen un consumo promedio de 60 y 80 litros por habitante en el día y aquellos que tienen una población entre 1000 y 2000 habitantes tienen un consumo promedio de 80 a 100 litros por habitante en el día.

Cuadro N° 2.1

<table>
<thead>
<tr>
<th>POBLACIÓN (habitantes)</th>
<th>DOTACIÓN (l/hab/día)3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HASTA 500</td>
<td>60</td>
</tr>
<tr>
<td>500 - 1000</td>
<td>60 - 88</td>
</tr>
<tr>
<td>1000 - 2000</td>
<td>80 - 100</td>
</tr>
</tbody>
</table>

Fuente: Ministerio de Salud (2001)

El consumo por región se puede visualizar en el cuadro N° 2.2 Según los estudios realizados por el Ministerio de Salud, los habitantes de la sierra del Perú tienen menos consumo de agua, 50 litros por habitante en el día. Los habitantes de la costa tienen un consumo de 60 litros por habitante en el día y los habitantes de la selva tienen un consumo mayor de agua 70 litros por habitante en el día.
Cuadro N° 2.2

Dotación de agua por día según el número de habitantes por región

<table>
<thead>
<tr>
<th>REGIÓN</th>
<th>DOTACIÓN (l/hab/día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa</td>
<td>60</td>
</tr>
<tr>
<td>Sierra</td>
<td>50</td>
</tr>
<tr>
<td>Selva</td>
<td>70</td>
</tr>
</tbody>
</table>

Fuente: Ministerio de Salud (2001)

II.4 Grado de satisfacción de la demanda del servicio de agua potable

En el caso del servicio de agua potable, se entenderá por oferta sólo al volumen de agua potable que efectivamente ingresa por las conexiones de los usuarios del servicio. Al momento de realizar la proyección del balance de oferta – demanda de este servicio, se empezó por estimar la demanda total del servicio de agua potable, para cada año de los grupos demandantes, haciendo uso de sus correspondientes funciones de demanda. Al momento de proyectar la demanda en el proyecto de inversión pública se hizo distinción entre los usuarios que cuentan con medidor y los que no lo tienen.¹

II.5 El sector saneamiento

El término saneamiento se refiere a todas las condiciones que afectan la salud, especialmente cuando están relacionadas a la falta de higiene y la enfermedad y en particular la desagüe, agua potable, la eliminación de aguas residuales y desechos de las viviendas.

- El sector exige una gestión eficiente con la finalidad que los ingresos cubran los costos económicos.
- Que se mejore el servicio de agua.
- La SUNASS exige la evaluación comercial, económica y operacional. (Cuando el número de conexiones es menor de 10 000 y mayor que 1000)
• Uno de los criterios de mayor trascendencia en la viabilidad de una empresa de saneamiento es la capacidad y la disposición a pagar por los potenciales usuarios.

• La SUNASS exige para la formalización de una Entidad Prestadora del Servicio lo siguiente:
 ➢ Razón Social
 ➢ Naturaleza de la Entidad Prestadora del Servicio
 ➢ Sede de la Entidad Prestadora
 ➢ Dispositivo de creación
 ➢ Ámbito de responsabilidad, especificando la totalidad de los servicios locales de saneamiento existentes en dicho ámbito
 ➢ Plazo de contrato de explotación
 ➢ Número de socios y nombre de ellos con excepción de la cantidad de acciones o participantes.
 ➢ Antecedentes de la Entidad Prestadora
 ➢ Otra Información necesaria para el cumplimiento de la finalidad del registro.
CAPÍTULO III
CARACTERIZACIÓN DEL A.A.H.H LA MOLINA, PIURA

En este capítulo se analizó la geografía del AAHH La Molina, este se encuentra ubicado en el sector Noroeste del distrito de Piura y cuenta con una población total 1737 habitantes, ubicados en 234 viviendas, que para efectos del estudio se han establecido 5 habitantes/vivienda; la encuesta será aplicada una por familia considerando que cada familia cuenta con necesidades básicas insatisfechas que desea satisfacer.

Para determinar el tamaño de la muestra del A.A.H.H La Molina, a la cual se le aplicará la encuesta y nos brindara la información necesaria para lograr cumplir con los objetivos propuestos por la investigación; se aplica una ecuación matemática la cual nos indica de le número de encuestas a realizar es de 234 encuestas (ver anexo), la cual se aplicara los jefes del hogar o conyugues del distrito de Ignacio escudero.

La muestra

Para obtener el tamaño de muestra se aplicó un muestreo probabilístico aleatorio simple, considerando la siguiente formula:

\[n = \frac{p \cdot q \cdot z^2 \cdot N}{E^2 \cdot N + z^2 \cdot p \cdot q} \]

\[N = 1737, \quad p = q = 0.5, \quad z = 1.6448, \quad E = 0.05 \]

Para lo cual el número de muestra es de 234.

La situación negativa que se evaluará y se intenta resolver data desde el año 1993, año en que se da inicio a la creación de dicho asentamiento humano. Solo una minoría de viviendas se encuentran conectadas al servicio de agua, sin embargo existe una gran mayoría de las viviendas que se abastece de agua mediante pilones dispuestos en las calles principales o a través de los abastecedores los famosos “aguateros”.

El suministro de agua potable, ha originado problemas en los silos, letrinas y pozos sépticos que a pesar de los cuidados para no permitir el ingreso de las aguas utilizadas en los quehaceres domésticos, estos han colapsado por la saturación de aguas

\[^{17} \text{Blanca Pinzón Maldonado. La Municipalidad Provincial de Piura. Estudio de Pre-Inversión (2009). “Mejoramiento y ampliación de agua potable y alcantarillado en el asentamiento humano La Molina”. Piura - Perú.} \]
servidas que directamente o indirectamente recolectan. Esta situación les origina un problema permanente, pues ya no tienen espacios en sus viviendas para excavar nuevas letrinas, mucho menos silos sépticos.

La relevancia o gravedad de la situación actual, la misma que debe ser modificada lo más pronto posible, es que la población de este asentamiento humano está consumiendo agua contaminada, pues las formas de abastecimiento se presta para ello. La población ha excavado suelo hasta encontrar la cañería de agua potable y ha conectado clandestinamente una manguera para extraer el líquido vital, observándose, además que existe basura alrededor del hueco, lo cual constituye un foco infectocontagioso capaz de transmitir diversas enfermedades.

La relevancia de solucionar este problema se puede constatar por medio de las estadísticas correspondientes a estas enfermedades. Según las estadísticas 1.8 millones de personas mueren cada año debido a enfermedades diarreicas (incluido el cólera); 90% de esas personas son niños menores de 5 años, principalmente procedentes de países en desarrollo.

III.1. Población

Según el Plan Estratégico de Desarrollo de la provincia de Piura 2004-2012 de la Municipalidad provincial de Piura, el distrito de Piura debe alcanzar una población de 246,897 habitantes, en el caso específico del área de influencia del proyecto, la población afectada lo constituyen 1737 habitantes, ubicadas en 234 viviendas que para efectos del estudio se han establecido 5 habitantes por vivienda. Asimismo, en la última década, la tasa de crecimiento poblacional promedio anual para la provincia de Piura es de 2.1%.

III.1.1 Nivel de ingreso de la población

La distribución del “Nivel de ingreso mensual de la vivienda” suministrado por los entrevistados obtenidos a través de la encuesta formulada a los usuarios de la zona de estudio. De los 234 entrevistado, se observa una media de S/.529.79 nuevos soles por vivienda. Como se puede apreciar en este apartado, el ingreso promedio registrado por los pobladores no se ajusta al ingreso mínimo que debería tener un ciudadano peruano

18 Como se puede observar en el plan estratégico de desarrollo de la municipalidad provincial de Piura.
dentro de las fronteras, por lo que este ingreso medio del total de la población no se ajusta a la compra de la canasta básica para el consumo de una familia promedio\(^9\). Por lo tanto podemos decir que los ingresos que perciben los pobladores de la zona en estudio son muy bajos, llegando solo al estrato medio, como más adelante especificaremos.

Gráfico N° 3.1

Ingreso Familiar Mensual

Como la intención es hacer un análisis más detallado de los ingresos en el área de estudio se ha dividido la muestra en dos niveles de ingresos, el criterio de clasificación es a juicio propio, considerando en el primer nivel aquellos que su niveles de ingreso no pasan el mínimo vital (s/.415.00 nuevos soles aproximadamente); catalogados como indigentes encontrándose en un estado económico bajo, según Boloña Berh (agosto, 2000), define a los pobres extremos en el Perú como aquellos que gastan menos de $ 1.14 dólares diarios, cifra que es inferior al consumo diario de una canasta per cápita de alimentos, 9.62 nuevos soles diarios; según información proporcionada por el INEI.

En segundo nivel, aquellas personas que sus niveles de ingresos se encuentran entre el salario mínimo vital (s/. 415.00 y s/. 1500.00 nuevos soles), considerados como los de Estrato Económico Medio, ya que según el INEI el gasto de la canasta familiar

asciende a S/.1442.28 nuevos soles. Tal como se muestra en el grafico N° 3.2 y según el INEI los pobladores del asentamiento humano La Molina, solo llegan al Estrato Económico medio, demostrando una vez más que las zonas urbanas con un menor crecimiento económico es en donde los niveles de ingresos son muy bajos es decir ingresos de subsistencia.

Gráfico N° 3.2

RANGO DE INGRESO FAMILIAR MENSUAL

![Gráfico N° 3.2](image)

Elaboración: Propia
Fuente: Encuesta aplicada – julio 2014

III.1.2. Educación

La información recopilada en campo, se obtuvo que la mayoría de la población ha alcanzado el nivel primario y una minoría ha estudiado hasta el nivel secundario. Existen aproximadamente un 10% de la población que ha alcanzado el nivel de educación superior (universitaria y técnica), esto según lo demuestra la encuesta aplicada a los habitantes de asentamiento humano La Molina.

El asentamiento humano La Molina, no cuenta con los servicios educativos, teniendo que recurrir el alumnado a los centros educativos de Los Algarrobos y/o centros educativos del sector noroeste San Martín. La oferta educativa en este sector está dada por: 01 Centro Educativo “PRONEI”, el cual pertenece a Educación Inicial que alberga a una población de 90 niños que van desde los 06 meses de edad hasta los 5 años de edad.
La educación, es el elemento estratégico más importante del desarrollo económico local, debe ser estudiado con cierto detenimiento. En éste caso, una vez más se comprueba con este estudio que los niveles de educación son muy bajos en cuanto a calidad e infraestructura y que esto se debe, en gran medida, a los bajos recursos de los pobladores pues sus ingresos solo abastecen sus alimentos.

La falta de acceso a la educación también se debe a que existe una falta de planificación urbana, la ausencia de políticas de prevención y ocupación racional del espacios, la práctica de “corredores de terrenos” o informales, etc, que invaden terrenos sin habilitación, etc. Todo esto hace saber que el estado muchas veces tiene poco o nada que hacer ya que son las mismas personas las cuales por conseguir un espacio de tierra van a invaden en terrenos o vías las cuales son de poco acceso haciendo que las personas que viven en dicho sector o zona no puedan acceder al derecho de la educación o medico haciendo que las personas sean más, no puedan acceder a estos servicios de manera rápida.

La educación constituye un requerimiento mínimo para que los pobladores de la zona puedan incorporarse adecuadamente a la vida productiva y social. Junto con la familia, la escuela es el agente socializador más importante, es por ello que si bien es cierto en la encuesta se consideró 6 categorías tomando en cuenta los estudios completos e incompletos (ver anexo 01).

Tal como se muestra en el gráfico N° 3.3, el mayor porcentaje de los entrevistados, estuvo conformada por personas extraídas de una forma aleatoria, la cual arrojo los siguientes resultados: que el 34.9% de los entrevistados tienen estudios secundarios inconclusos, y solo el 32.1% tiene educación secundaria completa, siendo solo 4.8% los habitantes que tienen educación técnica.

Con estos resultados podemos comprobar una vez más que es en las zonas urbanas con un menor crecimiento económico es donde los niveles de educación son muy bajos. Por tanto el bajo nivel educativo debilita el impulso al desarrollo de estas zonas, pues como afirmaba; Amartya Sen una de las variables importantes para combatir la pobreza es la educación.
Gráfico N° 3.3
NIVEL DE ESTUDIOS DE LOS INTEGRANTES DE LA FAMILIA

Elaboración: Propias
Fuente: Datos obtenidos a través programa SPSS.

III.1.3. Salud

El Asentamiento Humano La Molina actualmente no cuenta con un centro de salud propio, por lo que los moradores tienen que acudir al Centro de Salud de los Algarrobos (Centro de Salud que se encuentra a menor distancia), al cual acude la población de la zona afectada, según las opiniones de los habitantes del sector en estudio este no cuenta con los servicios adecuados en infraestructura así como en medicamentos como para poder abastecer de un buen servicio a la población. Según los datos recogidos en la encuesta solo un 17.7% de familias no han tenido ninguna enfermedad atribuida al contacto o consumo directo del agua, siendo las familias afectadas un 82.3%.

Obviamente es necesario cambiar esta situación, porque entre las enfermedades más frecuentes se encuentran las gastrointestinales, producidas por la carencia de una eliminación sanitaria adecuada de excretas. Se debe solucionar el permanente estado de morbilidad de los niños, específicamente en lo relacionado a la parasitosis infantil, enfermedad que tiene origen hídrico y que es una de las causas permanente de retraso en el crecimiento físico y mental del niño.

El agua para consumo humano ha sido definida en las Guías para la calidad del agua potable de la Organización Mundial de la Salud (OMS), como aquella “adecuada para consumo humano y para todo uso doméstico habitual, incluida la higiene".
En esta definición está implícito que el uso del agua no debería presentar riesgo de enfermedades a los consumidores. El reconocimiento del agua como vehículo de dispersión de enfermedades data de hace mucho tiempo. Las enfermedades prevalentes en los países en desarrollo, donde el abastecimiento de agua y el saneamiento son deficientes, son causadas por bacterias, virus, protozoarios y helmintos. Esos organismos causan enfermedades que van desde ligeras gastroenteritis hasta enfermedades graves y fatales de carácter epidémico.

No obstante, la calidad del agua no es suficiente para asegurar beneficios a la salud humana; es necesario que adicionalmente se satisfagan tres aspectos: cantidad, continuidad y costo razonable. Debido a que la población en estudio no cuenta con los servicios básicos de agua potable y alcantarillado, se puede observar que en la mayoría de las viviendas encuestadas hay como mínimo una persona que ha padecido enfermedades producto del agua, así tenemos el siguiente gráfico en el que nos muestra esta realidad.

Gráfico Nº 3.4

NUMERO DE FAMILIARES CON PADECIMIENTO DE ENFERMEDADES POR CAUSA DEL AGUA

![Gráfico](image)

Elaboración: Propia
Fuente: Encuesta aplicada – julio 2014

La situación de salud tiene sus riesgos más comunes de salud de la población del asentamiento humano La Molina, están relacionados al campo de saneamiento que se reflejan en la situación siguiente:
- **La incompleta existencia de un sistema de eliminación de excretas:** En la zona de estudio se utiliza un sistema de eliminación de excretas, como son los silos o pozos ciegos, aunque en varias ocasiones se encuentran la eliminación de excretas al aire libre en toda la zona, la utilización de pozo ciego minimiza el impacto de la contaminación por vectores orgánicos, pero no en su totalidad.

- **La población carece de una cultura de salud:** Por lo que realiza inadecuadas prácticas y hábitos de higiene personal (escaso aseo, manipulación inadecuada del agua, falta de limpieza de los alimentos ingeridos, etc.). Como se dijo en líneas anteriores este asentamiento humano no cuenta con un centro de salud, teniendo que recurrir al más cercano, que se encuentra en el centro del asentamiento humano Los Algarrobos, no tan distante ya que se encuentra a 10 minutos en moto-taxi; o al Puesto de salud de al Hospital de Santa Rosa, el cual se localiza a 20 minutos de distancia en moto-taxi. Las enfermedades más frecuentes, según información recogida en el presente estudio son: fiebre tifoidea, cólera, hepatitis, diarreas, etc.

III.2 Vivienda y servicios básicos

La mayoría de las viviendas de la zona son viviendas de material rustico. Actualmente, toda la población cuenta con el servicio de energía eléctrica y el 16% de la población total cuenta con el servicio de agua potable (conectados al sistema). En cuanto al servicio de alcantarillado sólo existe como prueba funcionando de 7 am hasta las 6 pm.

El A.A.H.H La Molina, se sirve de agua a través de un sistema de bombeo que consiste en la captación subterránea de agua a través de dos pozos tubulares, uno ubicado en la UPIS Pueblo Libre (Sector Villa Jardín) y el otro en la IV Etapa del A.A.H.H Los Algarrobos.

El servicio de agua brindado por el pozo “Puerto de la Esperanza” ubicado en la UPIS Pueblo Libre el cual abastece a los sectores de la UPIS Pueblo Libre, A.A.H.H Néstor Martos, Los Geranios, Los Rosales, La Molina y Las Dalias. Este pozo, ofrece el

servicio de abastecimiento de agua potable con una continuidad promedio de 11 horas diarias.

Según reportes de la empresa EPS Grau S.A y como se pudo constatar a través de la encuesta que solo 11 de estas viviendas cuentan con micro medición y el resto maneja un consumo promedio, el cual es de 15m³/mes cuya tarifa promedio es de S/.16.10 nuevos soles. Así mismo las familias que no están conectadas al sistema consumen en promedio 10 latas diarias de agua potable²¹, el mismo que les cuesta s/.0.50 nuevo sol cada lata; y de las estas 11 viviendas favorecidas dan un total de 18 familias, las cuales ya que muchas veces son dos o más familias las cuales viven dentro de una misma vivienda.

Tal y como podemos observar en el gráfico N° 3.4, la mayor parte de la población no cuenta con los servicios básicos de agua potable y alcantarillado, por lo que los habitantes de la zona se ven en la necesidad de abastecerse de este bien natural a través de pilones dispuestos en las calles principales o de las casas vecinas, o en su defecto adquirirlo mediante la compra a los denominados “aguateros”, estos pilones se encuentran ubicados en el sector “c”, “h” y “o”, viéndose también que en este último sector se encuentran dañado por las fugas y la contaminación por las lagunas de aguas servidas que se encuentran en dicho lugar; los moradores también enfrentan serias dificultades para realizar sus necesidades fisiológicas ya que los silos construidos de manera rudimentaria ya cumplieron su vida útil y ya no existe otro espacio en la vivienda para construir otro silo, lo que genera que los pobladores realicen sus necesidades fisiológicas en algunos a la intemperie contaminando el medio ambiente.

Gráfico N° 3.5

FAMILIAS QUE CUENTAN CON SERVICIOS BÁSICOS EN SUS HOGARES

<table>
<thead>
<tr>
<th>Servicio</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con servicio de alcantarillado en su hogar</td>
<td>27.2%</td>
</tr>
<tr>
<td>Con servicio de agua potable en su vivienda</td>
<td>20.3%</td>
</tr>
</tbody>
</table>

Elaboración: Propia
Fuente: Encuesta aplicada – Julio 2014

²¹ Cada lata contiene en promedio 20 litros de agua.
III.3 Situación actual de los servicios de agua y alcantarillado

III.3.1. Servicio de agua potable

Los nueve asentamientos humanos y la urbanización ubicados en el sector Noroeste de la ciudad de Piura son abastecidos por un sistema de agua potable conformado por una red matriz de tuberías y 02 pozos tubulares. Una de las líneas de tubería corresponde al Pozo de la Esperanza; es un conducto de 8” de 80 m. de longitud, instalada entre el pozo tubular y la red de distribución.

El pozo puerta de la esperanza está localizado en el sector Villa jardín. Tiene una capacidad de 45 lps. Y una profundidad de 148 m. Tiene además un nivel estático de 45 m. y un nivel dinámico de 59 m. El diámetro del pozo es de 15” (entubado). Las horas de bombeo son de 11 horas diarias en promedio.

III.3.2 Servicio de alcantarillado

El A.A.H.H La Molina, carece de un sistema continuo de red de alcantarillado, siendo las aguas servidas arrojadas a la vía pública y la disposición de excretas se hacen en letrinas y pozos sépticos que han sido construidas en forma incipiente no teniendo un mantenimiento apropiado lo cual genera la contaminación del suelo y la proliferación de microorganismos patógenos.

Un pozo séptico o silo sin mantenimiento se convierte en foco de contaminación, estos se ubican en patios de las viviendas, que a la vez que es utilizado como lavanderías, depósitos de materiales diversos, depósitos de leña, etc. Las aguas provenientes del lavado de ropa son arrojadas a campo abierto propiciando la presencia de charcos, que sirven de criaderos de insectos transmisores de enfermedades.

En la zona de estudio se encuentra distribuida como se dijo anteriormente por un total 1737 habitantes, ubicados en 234 viviendas, que para efectos del estudio se han establecido 5 habitantes/vivienda y conforman nuestro campo de estudio se hace necesario la implementación de un sistema de alcantarillado, la dotación para estos tipos de población es de 150 lts/hab/día.
CAPÍTULO IV
ANÁLISIS DEL PROYECTO DE INVERSIÓN PÚBLICA “MEJORAMIENTO Y AMPLIACIÓN DE AGUA POTABLE Y ALCANTARILLADO DEL ASENTAMIENTO HUMANO LA MOLINA”

Actualmente, el mayor problema que enfrenta la población del asentamiento humano La Molina, ubicada en el sector Noroeste del distrito de Piura, es la insalubridad originada por la proliferación y exposición libre de excretas ante la falta del sistema de alcantarillado y a la baja cobertura con silos y pozos sépticos existentes en la zona. La otra debilidad de los servicios de saneamiento es, la discontinuidad en el suministro de agua potable hacia la población, a pesar de contar con dos fuentes de abastecimiento (Pozo “Puerta de la Esperanza” y pozo “Los Algarrobos”).

El proyecto plantea materializar en los próximos años la ampliación y mejoramiento del sistema de redes de agua potable y la construcción del sistema de alcantarillado, teniendo como punto de partida el aprovechamiento de la infraestructura existente. Con ello se espera coberturar y ofrecer un adecuado servicio de agua potable y alcantarillado en la zona de estudio.

Estas mejoras de los servicios debe estar de la mano con la capacitación de los usuarios, orientados a valorar el servicio que se les presta, incentivar al poblador incorporarse a valorar a los sistemas de saneamiento y ampliar sus conocimientos en educación sanitaria que los ayude a desterrar sus malas prácticas de higiene.

Características de la situación negativa que se intenta modificar:

Entre las características más resaltantes podemos mencionar:

- **Elevado índice de enfermedades infectocontagiosas, parasitarias, de la piel y otras:** La carencia del sistema de alcantarillado y por ende la inadecuada disposición de excretas y aguas residuales aunado a la baja cobertura de agua potable generan contaminación ambiental y focos infecciosos que ocasionan enfermedades atentando contra la salud de las personas especialmente los niños pues son los más vulnerables.
• **Emanación de olores nauseabundos:** Al realizar la disposición de excretas a la intemperie se originan olores nauseabundos, especialmente por las tardes por la presencia de los rayos solares y los fuertes vientos.

• **Contaminación del medio ambiente:** Con la exposición de excretas a la interperpie se contamina el medio ambiente de la zona además de la proliferación de insectos y roedores.

• **Inadecuadas condiciones de habitabilidad:** La deficiencia en el servicio de agua potable y la falta de un sistema de alcantarillado no permite realizar satisfactoriamente las labores domésticas en el hogar, como cocina, lavado, limpieza, aseo persona y disposición de las necesidades fisiológicas, no preservándose la salud y comodidad de los pobladores que realizan actividades socioeconomicas productivas con la finalidad de lograr el bienestar básico de la población.

En tal sentido, se propone desarrollar un conjunto de actividades dirigidas a mejorar y a modificar la crítica situación actual de los 1737 habitantes ubicados en esta zona, disminuyendo los índices de enfermedades infecciosas, enfermedades de la piel y asimismo la contaminación ambiental, y el cuidado de la ecología, logrando mejorar el nivel de vida de la población, disminuyendo los niveles de pobreza extrema.

a) **Relevancia:** La relevancia o gravedad de la situación actual, la misma que debe ser modificada lo más pronto posible, es que la población de este asentamiento humano está consumiendo agua contaminada, pues las formas de abastecimiento se presta para ello. La población ha excavado suelo hasta encontrar la cañería del agua potable y ha conectado clandestinamente una manguera para extraer el líquido vital, observándose además que existe basura alrededor del hueco, lo cual constituye un foco infeccioso capaz de transmitir diversas enfermedades.

Se almacena agua en baldes que no ofrecen ninguna seguridad sanitaria, algunos carecen de tapas y otros se ven descuidados. Además el contacto del agua con las manos genera contaminación, por lo que es probable que la población enferme de diarreas, hepatitis, etc.

Por otro lado, el agua que comercializan los aguateros tampoco ofrecen seguridad, porque trasladan el agua en baldes en donde es posible que proliferen muchos microbios ya que no existe ninguna entidad que se encargue de controlar y fiscalizar esta actividad.
Cabe resaltar que las entidades correspondientes deben fiscalizar a estos proveedores, pues el consumo de agua contaminada es un medio transmisor de enfermedades como: Hepatitis, tifoidea, diarreas, entre otras.

La relevancia de solucionar este problema se puede constatar por medio de las estadísticas correspondientes a estas enfermedades. Según las estadísticas 1.8 millones de personas mueren cada año debido a enfermedades diarreicas (incluido el cólera); un 90% de esas personas son niños menores de 5 años, principalmente procedentes de países en desarrollo. Según los informes por el Hospital de Santa Rosa, el cual está ubicado en la Prolongación Grau S/N, existe una alto porcentaje de casos los cuales se han visto en los últimos años incrementados como consecuencia de la ingesta de aguas contaminadas las cuales ha ocasionado fuertes enfermedades diarreicas.

La situación negativa actual de deterioro de la calidad de vida refleja una situación crítica de índole estructural, puesto que se requiere de complementar estructuras sanitarias o construir otras nuevas para lograr cambiar las condiciones de vida de la población.

b) Intereses de los grupos involucrados: La política social del Gobierno Local priorizar el Sector Salud en el componente saneamiento ambiental, desde la perspectiva de que una condición elemental para la buena salud y una mejor calidad de vida, es contar con servicios básicos de agua potable y desagüe, el presente proyecto de inversión tiene muchas posibilidades de ejecutarse; de otro lado la decisión del gobierno local de promover y apoyar el fortalecimiento institucional de la empresa dedicada a la prestación de servicios de saneamiento (EPS GRAU S.A) y el interés mostrado por esta y de la población directamente afectada por generar condiciones básicas de salubridad y mejor calidad de vida, gestionando la construcción del sistema de Alcantarillado y Ampliación de Servicio de agua potable, que hace sostenible la presente propuesta.
<table>
<thead>
<tr>
<th>GRUPO DE INVOLUCRADOS</th>
<th>PROBLEMAS PERCIBIDOS</th>
<th>INTERESES</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS GRAU S.A</td>
<td>• Bajos niveles de cobertura en el servicio de agua y alcantarillado. • La infraestructura actual no cumple con las normas básicas del sector.</td>
<td>• Incrementar la cobertura del servicio de agua y alcantarillado. • Adecuada infraestructura para servicio de agua y alcantarillado.</td>
</tr>
<tr>
<td>Sector Salud</td>
<td>• Altos niveles de morbilidad en la población del distrito de Piura.</td>
<td>• Disminuir los niveles de morbilidad en la población directamente afectada ubicada en la zona de estudio.</td>
</tr>
<tr>
<td>Gobierno Regional Piura</td>
<td>• Bajos niveles de bienestar social en el distrito de Piura</td>
<td>• Contribuir aumentar los niveles de bienestar en el distrito de Piura.</td>
</tr>
<tr>
<td>Municipalidad Provincial de Piura</td>
<td>• Baja cobertura de agua y falta de redes y conexiones domiciliarias de alcantarillado.</td>
<td>• Mejorar los niveles de cobertura de agua e instalación de redes y conexiones domiciliarias de alcantarillado.</td>
</tr>
<tr>
<td>Población afectada</td>
<td>• Alta incidencia de enfermedades infectocontagiosas en la población. • Bajos niveles de calidad de vida de los pobladores.</td>
<td>• Disminuir la incidencia de enfermedades infectocontagiosas en la población. • Mejorar los niveles de calidad de vida de la población.</td>
</tr>
</tbody>
</table>

Elaboración: Propia
Fuente: Encuesta aplicada – Julio 2014
Existe el interés común de la población en su conjunto de coadyuvar esfuerzos y gestiones orientados a solucionar el grave problema que los aqueja y que hace peligrar la vida de muchas personas, especialmente la de niños y ancianos que son los más vulnerables.

c) **Definición del problema y sus causas**

Problema Central

El problema central que originó el Proyecto, es la presencia de enfermedades infecciosas y parasitarias en el A.A.H.H La Molina - Piura, debido al consumo de agua sin el tratamiento adecuado, por hábitos de higiene no apropiados además de carencia de desagüe en viviendas no coberturadas o mal uso de las letrinas y pozos sépticos, así como a las condiciones deficientes de salubridad por falta de una adecuada evacuación de aguas servidas y disposición de excretas.

Las causas directas son:

- Inadecuado e insuficiente servicio de agua y alcantarillado.
- Inadecuados hábitos y prácticas de higiene de la población, que se derivan de la carencia de educación sanitaria.

Las causas indirectas son:

- Deficiencias en el sistema de conducción de agua y distribución de agua.
- Carencia de los medios de control de consumo y de conexiones domiciliarias.
- Sectores sin cobertura del sistema de agua potable y alcantarillado.
- Inadecuada gestión de los servicios.
- Carencia de educación sanitaria.

Los efectos directos del problema son:

- Gastos de los habitantes en medicinas y tratamientos de enfermedades.
- Existencia de focos infecciosos con graves consecuencias para la salud.
• Contaminación ambiental de las localidades, debido a la eliminación de excretas o en su defecto debido a la inadecuada disposición de aguas servidas.

Los efectos Indirectos son:

• Empeora la situación de pobreza de los habitantes, actualmente, gran porcentaje de los hogares tiene por lo menos una necesidad básica insatisfecha, lo cual los ubica dentro de las zonas de Piura con pobreza total y precisamente una de las necesidades insatisfechas es la carencia de sistemas de alcantarillado para la disposición de excretas.

• Deterioro del medio ambiente, de contar con un servicio de agua y desagüe eficiente, podría alcanzar un desarrollo urbano mayor de lo que actualmente presenta.

Efecto final:

El efecto final es el Deterioro del nivel de vida de la población de la zona en estudio.
Cuadro No 4.2

ARBOL DE CAUSAS Y EFECTOS

| EFECTO FINAL |
| Deterioro del nivel de vida de la población del A.A.H.H La Molina - Piura |

Efecto indirecto
- Empeora la situación de pobreza de los habitantes.

Efecto directo
- Gastos de los habitantes en medicinas y tratamiento de enfermedades.

Efecto indirecto
- Deterioro del medio

Efecto directo
- Existencia de focos infecciosos con graves consecuencias para la salud

Efecto directo
- Contaminación ambiental de la zona en estudio.

Problema central
- Presencia de enfermedades infecciosas y parasitarias del A.A.H.H La Molina I - Piura

| Causa directa |
| Inadecuado e insuficiente servicio de agua y alcantarillado |

| Causa indirecta |
| Deficiencias en el sistema de conducción y distribución |

| Causa indirecta |
| Carencia de los medios de control de consumo y de conexiones domiciliarias |

| Causa indirecta |
| Sectores sin cobertura del sistema de agua y alcantarillado |

| Causa indirecta |
| Inadecuada gestión de los servicios |

| Causa indirecta |
| Carencia de educación sanitaria |

Elaboración: Propia
Fuente: Encuesta aplicada – Julio 2014

Planteamiento de alternativas

La solución al problema alta incidencia de enfermedades infectocontagiosas, intestinales, helmintiasis y dèrmicas, pasa por garantizar un abastecimiento de agua potable de manera segura y continua, independientemente de la forma de llegar con ella. En tal sentido, los sistemas de abastecimiento de agua reúnen un gran número de ventajas que garantizan la distribución de agua hasta el interior del domicilio en las mejores
condiciones, que conjuntamente con los sistemas de alcantarillado y las plantas de tratamiento de agua servidas, tiene la función de crear buenas condiciones de saneamiento y como tal, tiene un carácter preventivo en la salud, dado que es más económico prevenir enfermedades que curarlas.

En el proyecto de inversión, para los diferentes componentes del Sistema Integral de Saneamiento Básico, se ha planteado una sola alternativa:

Alternativa Única

- Construcción del sistema de alcantarillado mediante tubería de PVC ISO S-20.
- Ampliación del sistema de redes de agua potable.

COSTOS

Costos en la situación Sin Proyecto:

La situación sin proyecto es la situación actual, en esta situación el servicio de agua potable está administrado por la EPS GRAU S.A. El sector Noroeste se abastece de agua potable desde dos fuentes de abastecimiento que lo constituyen dos pozos tubulares. Estos pozos son: Pozo (P-1) Puerta de la Esperanza, el cual oferta un rendimiento máximo de 45 litros por segundo "lps"; el segundo denominado pozo (P-2) Los Algarrobos, cuyo rendimiento máximo es de 72 lps.

De acuerdo a la información proporcionada por la EPS Grau S.A los costos anuales en operación y mantenimiento del Pozo de la Esperanza ascienden a S/.49,873.08 nuevos soles y del Pozo Los Algarrobos su costo anual es de S/.220,726.56 nuevos soles; en suma ambos costos representan un total de S/.270,599.64 nuevos soles respectivamente. Asimismo, los costos de operación y mantenimiento anual de las redes de agua potable en este sector ascienden a S/.50,030.00 nuevos soles. Es decir, los costos en la situación sin proyecto vendrían representados por la suma de S/.320,629.94 nuevos soles.

22 PROYECTO DE INVERSION PÚBLICA. "Mejoramiento y Ampliación de Agua Potable y Alcantarillado en el Asentamiento Humano La Molina I – Piura", elaborado por la Municipalidad Provincial de Piura. Econ. Blanca Pinzón Maldonado.
Agua potable:

Cuadro N° 4.3

COSTOS DE OPERACIÓN Y MANTENIMIENTO SIN PROYECTO
SISTEMA DE AGUA POTABLE

<table>
<thead>
<tr>
<th>RUBRO</th>
<th>COSTOS TOTAL S/.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos de Operación y Mantenimiento de los Pozos</td>
<td>270,599,64</td>
</tr>
<tr>
<td>1) Energía</td>
<td>155,061,60</td>
</tr>
<tr>
<td>2) Mantenimiento</td>
<td>17,698,56</td>
</tr>
<tr>
<td>3) Reposición</td>
<td>18,150,00</td>
</tr>
<tr>
<td>4) Suministros de insumos</td>
<td>28,130,40</td>
</tr>
<tr>
<td>5) Operarios y obreros</td>
<td>38,400,00</td>
</tr>
<tr>
<td>6) Vigilancia</td>
<td>1,752,00</td>
</tr>
<tr>
<td>7) Administración</td>
<td>11,407,08</td>
</tr>
</tbody>
</table>

Costos de Operación y Mantenimiento de las redes de agua potable

<table>
<thead>
<tr>
<th>RUBRO</th>
<th>COSTOS TOTAL S/.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos de Operación y Mantenimiento de los Pozos</td>
<td>50,030,00</td>
</tr>
<tr>
<td>1) Operación</td>
<td>48,150,00</td>
</tr>
<tr>
<td>2) Mantenimiento</td>
<td>1,880,00</td>
</tr>
</tbody>
</table>

Cuadro N° 4.4

COSTOS DE OPERACIÓN Y MANTENIMIENTO SIN PROYECTO
SISTEMA DE AGUA POTABLE – POZO LOS ALGARROBOS

<table>
<thead>
<tr>
<th>Costos de Operación y Mantenimiento de los Pozos</th>
<th>MONTO MENSUAL (S/.)</th>
<th>MONTO ANUAL (S/.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Energía</td>
<td>11,329,10</td>
<td>135,949,20</td>
</tr>
<tr>
<td>2) Mantenimiento</td>
<td>737,44</td>
<td>8,849,28</td>
</tr>
<tr>
<td>3) Reposición</td>
<td>756,25</td>
<td>9,075,00</td>
</tr>
<tr>
<td>4) Suministros de insumos</td>
<td>1,910,80</td>
<td>22,929,60</td>
</tr>
<tr>
<td>5) Operarios y obreros</td>
<td>2,700,00</td>
<td>32,400,00</td>
</tr>
<tr>
<td>6) Vigilancia</td>
<td>146,00</td>
<td>1,752,00</td>
</tr>
<tr>
<td>7) Administración</td>
<td>814,29</td>
<td>9,771,48</td>
</tr>
</tbody>
</table>

TOTAL | 18,393,88 | 220,726,56 |

Cuadro N° 4.5
COSTOS DE OPERACIÓN Y MANTENIMIENTO SIN PROYECTO SISTEMA DE AGUA POTABLE - POZO PUERTA DE LA ESPERANZA

<table>
<thead>
<tr>
<th>Costos de Operación y Mantenimiento de los Pozos</th>
<th>MONTO MENSUAL (S/.)</th>
<th>MONTO ANUAL (S/.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Energía</td>
<td>1.592,70</td>
<td>19.112,40</td>
</tr>
<tr>
<td>2) Mantenimiento</td>
<td>737,44</td>
<td>8.849,28</td>
</tr>
<tr>
<td>3) Reposición</td>
<td>756,25</td>
<td>9.075,00</td>
</tr>
<tr>
<td>4) Suministros de insumos</td>
<td>433,40</td>
<td>5.200,80</td>
</tr>
<tr>
<td>5) Operarios y obreros</td>
<td>500,00</td>
<td>6.000,00</td>
</tr>
<tr>
<td>6) Vigilancia</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>7) Administración</td>
<td>136,30</td>
<td>1.635,60</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4.156,09</td>
<td>49.873.08</td>
</tr>
</tbody>
</table>

Alcantarillado:

Cuadro N° 4.6
GASTOS DE OPERACIÓN Y MANTENIMIENTO SIN PROYECTO SISTEMA DE ALCANTARILLADO

<table>
<thead>
<tr>
<th>COSTOS DE OPERACION</th>
<th>MONTO ANUAL S./</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Energía</td>
<td>0</td>
</tr>
<tr>
<td>2. Mantenimiento</td>
<td>0</td>
</tr>
<tr>
<td>3. Suministros de Insumos</td>
<td>0</td>
</tr>
<tr>
<td>4. Operarios y Obreros</td>
<td>0</td>
</tr>
<tr>
<td>5. Administración</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0</td>
</tr>
</tbody>
</table>

Costos en la situación Con Proyecto

ALTERNATIVA UNICA AGUA POTABLE

Como consecuencia del funcionamiento del proyecto los costos de operación y mantenimiento en conjunto para los tres pozos a precios privados ascienden a
S/.491,326.20 por año. En el siguiente cuadro se consolidan los costos operativos que se han determinado de acuerdo a la estructura de costos que se muestra a continuación.

Cuadro N° 4.7

GASTOS DE LA OPERACIÓN Y MANTENIMIENTO CON PROYECTO SISTEMA DE AGUA POTABLE

<table>
<thead>
<tr>
<th>Costos de Operación y Mantenimiento</th>
<th>MONTO MENSUAL S/</th>
<th>MONTO ANUAL S/</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Energía</td>
<td>24,250.90</td>
<td>291,010.80</td>
</tr>
<tr>
<td>2) Mantenimiento</td>
<td>2,212.32</td>
<td>26,547.84</td>
</tr>
<tr>
<td>3) Reposición</td>
<td>2,268.75</td>
<td>27,225.00</td>
</tr>
<tr>
<td>4) Suministro de insumos</td>
<td>4,255.00</td>
<td>51,060.00</td>
</tr>
<tr>
<td>5) Operarios y obreros</td>
<td>5,900.00</td>
<td>70,800.00</td>
</tr>
<tr>
<td>6) Vigilancia</td>
<td>292.00</td>
<td>3,504.00</td>
</tr>
<tr>
<td>7) Administración</td>
<td>1,764.88</td>
<td>21,178.56</td>
</tr>
<tr>
<td>TOTAL</td>
<td>40,943.85</td>
<td>491,326.20</td>
</tr>
</tbody>
</table>

Esta estructura de costos, ha sido determinada, bajo el supuesto de que los costos operativos y de mantenimiento para el pozo proyectado P – 3, mantendrá la misma estructura que el pozo Los Algarrobos. Asimismo, se ha considerado que los costos de operación y mantenimiento de redes de agua potable aumentarán en un 5% los costos actuales, de esta manera los costos de operación ascenderían a S/.57,780.00 nuevos soles y los costos de operación y mantenimiento con proyecto ascenderían a la suma de S/.551,362.20 nuevos soles.

Alcantarillado:

Cuadro N° 4.8

GASTOS DE OPERACIÓN Y MANTENIMIENTO CON PROYECTO SISTEMA DE ALCANTARILLADO + PLANTA DE TRATAMIENTO (A PRECIOS PRIVADOS)

<table>
<thead>
<tr>
<th>COSTOS DE OPERACION</th>
<th>MONTO ANUAL S/</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Energía</td>
<td>55,403</td>
</tr>
<tr>
<td>2. Mantenimiento</td>
<td>24,248</td>
</tr>
<tr>
<td>3. Suministro de Insumos</td>
<td>20,691</td>
</tr>
<tr>
<td>4. Operarios y Obreros</td>
<td>50,329</td>
</tr>
<tr>
<td>5. Administración</td>
<td>5,857</td>
</tr>
<tr>
<td>6. Reposición de Equipos</td>
<td>48,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>204,527</td>
</tr>
</tbody>
</table>

EVALUACIÓN ECONÓMICA

a) Metodología Costo – Beneficio

Agua Potable: Alternativa Única

Se aplicó la evaluación económica a través de la metodología Costo/Beneficio, de acuerdo al modelo de Evaluación Económica a los Precios Sociales de un Proyecto de Agua Potable, obteniéndose los siguientes resultados:

VAN SOCIAL: $4,605,505
TIR SOCIAL: 19%

Como se puede observar, socialmente la inversión en el sistema de agua potable es rentable.

b) Metodología Costo - Beneficio

Sistema de Alcantarillado

El análisis de la metodología Costo/Beneficio permite establecer los costos unitarios del proyecto por beneficiario. Para determinar el índice de costo efecutividad del Sistema de saneamiento Básico, se calculan los costos del proyecto y se encuentra la relación del Valor Actual de los Costos Totales y la población beneficiaria durante el horizonte de planeamiento del proyecto. Los costos de inversión a precios privados del Sistema de Alcantarillado en sus dos componentes ascienden a S/.10,205,987.82 nuevos soles y comprende:

- Alcantarillado: S/.8,366,051.17 nuevos soles
- Planta de Tratamiento: S/.1,839,938.65 nuevos soles

Los Costos incrementales de operación y mantenimiento a precios privados del Sistema de Alcantarillado + planta de tratamiento ascienden a S/.204,527 nuevos soles.

Análisis de Sensibilidad

El análisis de sensibilidad permite determinar cuán riesgoso es el proyecto ante variaciones de una o más variables que afecten el proyecto con la finalidad de establecer si continua siendo rentable o no rentable.

Agua Potable

Referente al componente de agua potable, para el presente proyecto se ha realizado un análisis unidimensional, habiéndose identificado como las variables más relevantes el VAN y TIR y su reacción ante los posibles cambios en alguna de las variables más relevantes como son: en los costos de inversión, los costos de operación y mantenimiento y en los beneficios, tal como se detalla a continuación:

- Incremento del 5%, 10% y 20% de los costos de inversión.
• Incremento del 5%, 10% y 20% de los Costos de operación y mantenimiento.
• Reducción del 5%, 10% y 20% de los Beneficios del proyecto.

Cuadro N° 4.9
Sensibilidad del Valor Actual Neto (VAN)

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>VAN INICIAL</th>
<th>VAN MODIFICADO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>Inversión</td>
<td>4,605,505</td>
<td>4,041,198</td>
</tr>
<tr>
<td>Costos de O y M</td>
<td>4,605,505</td>
<td>4,695,487</td>
</tr>
<tr>
<td>Beneficios</td>
<td>4,605,505</td>
<td>4,193,430</td>
</tr>
</tbody>
</table>

Cuadro N° 4.10
Sensibilidad de la Tasa Interna de Retorno (TIR)

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>TIR INICIAL</th>
<th>TIR MODIFICADO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>Inversión</td>
<td>19%</td>
<td>19%</td>
</tr>
<tr>
<td>Costos de O y M</td>
<td>19%</td>
<td>19%</td>
</tr>
<tr>
<td>Beneficios</td>
<td>19%</td>
<td>19%</td>
</tr>
</tbody>
</table>

Como puede observarse, ante variaciones del 5%, 10% y 20% el proyecto sigue siendo rentable, dado que el VAN es positivo (VAN >0) y la TIR es mayor que la Tasa de Descuento (14%) establecida por el Ministerio de Economía y Finanzas (MEF)

Alcantarillado:

En relación al sistema de alcantarillado y la planta de tratamiento, el análisis de sensibilidad se efectuará considerando los costos de inversión y los costos de operación y mantenimiento, teniendo en cuenta que no se pueden medir los beneficios, cuya evaluación económica se ha realizado a través de la metodología costo – efectividad.
Cuadro N° 4.11
SENSIBILIDAD AL INCREMENTO DE LOS COSTOS DE INVERSIÓN

<table>
<thead>
<tr>
<th>N°</th>
<th>% Variación de Costos de Inversión</th>
<th>Indicador Costo – Efectividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0%</td>
<td>202</td>
</tr>
<tr>
<td>2</td>
<td>10%</td>
<td>220</td>
</tr>
<tr>
<td>3</td>
<td>15%</td>
<td>229</td>
</tr>
<tr>
<td>4</td>
<td>20%</td>
<td>238</td>
</tr>
<tr>
<td>5</td>
<td>25%</td>
<td>247</td>
</tr>
<tr>
<td>6</td>
<td>30%</td>
<td>256</td>
</tr>
<tr>
<td>7</td>
<td>35%</td>
<td>265</td>
</tr>
<tr>
<td>8</td>
<td>40%</td>
<td>274</td>
</tr>
<tr>
<td>9</td>
<td>45%</td>
<td>283</td>
</tr>
<tr>
<td>10</td>
<td>50%</td>
<td>292</td>
</tr>
</tbody>
</table>

Gráfico N° 4.1
PORCENTAJE DE INCREMENTO DE COSTOS DE INVERSION

Como puede observarse en el gráfico N° 4.1, el proyecto soporta un incremento aproximadamente de 15.6% en los costos de inversión del sistema de alcantarillado.
Cuadro N° 4.12

SENSIBILIDAD AL INCREMENTO DE LOS COSTOS DE OPERACIÓN Y MANTENIMIENTO

<table>
<thead>
<tr>
<th>Nº</th>
<th>% Variación de Costos de Inversión</th>
<th>Indicador Costo - Efectividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0%</td>
<td>202</td>
</tr>
<tr>
<td>2</td>
<td>30%</td>
<td>209</td>
</tr>
<tr>
<td>3</td>
<td>45%</td>
<td>212</td>
</tr>
<tr>
<td>4</td>
<td>60%</td>
<td>215</td>
</tr>
<tr>
<td>5</td>
<td>75%</td>
<td>219</td>
</tr>
<tr>
<td>6</td>
<td>90%</td>
<td>222</td>
</tr>
<tr>
<td>7</td>
<td>105%</td>
<td>225</td>
</tr>
<tr>
<td>8</td>
<td>120%</td>
<td>228</td>
</tr>
<tr>
<td>9</td>
<td>135%</td>
<td>232</td>
</tr>
<tr>
<td>10</td>
<td>150%</td>
<td>235</td>
</tr>
</tbody>
</table>

Gráfico N° 4.2

SENSIBILIDAD A VARIACIÓN DE COSTOS DE O Y M

En el gráfico N° 4.2, se puede observar que el proyecto soporta un incremento aproximadamente de 127.1% en los costos de operación y mantenimiento.
IMPACTO AMBIENTAL

La ejecución y posterior puesta en funcionamiento del proyecto “Mejoramiento y ampliación del sistema de agua potable y construcción del sistema de alcantarillado del asentamiento humano La Molina”, trae beneficios en el medio físico, y como consecuencia mejorará el medio ambiente, la salud y en el quehacer diario de las personas, así mismo habrá una mejora en la calidad del aire, del agua y el suelo.

La puesta en funcionamiento del proyecto traerá beneficios positivos en el medio ambiente, contribuyendo a mejorar la salud de la población y en la implementación de puestos de trabajo de mano de obra calificada y no calificada del distrito, la provincia y del departamento. El proyecto contempla la ejecución de obras que permitan dotar del servicio de agua potable, medida de prevención de mayor impacto positivo e incidencia directa en la salud de la población, mejorando la calidad de vida de la población.

Además los residuos producidos durante las labores de ejecución del proyecto, principalmente los excedentes de excavación, deberán disponerse en terrenos eriazos, alterando lo menos posible el entorno y donde no haya riesgo de derrumbes o deslizamientos. Igualmente durante la fase de operación, se debe garantizar la calidad del agua a través de labores de desinfección y control de calidad mediante análisis de muestras, tomadas en diferentes puntos de la red de distribución, los resultados deberán compararse con la norma de la Organización Mundial de la Salud (OMS).

El uso de agua debe ser en forma racional evitando desperdicios, controlando las fugas que se puedan presentar en el sistema.

IMPACTO SOCIAL

Positivo
- Empleos creados con la ejecución del proyecto “Mejoramiento y ampliación del sistema de agua potable y construcción del sistema de alcantarillado del asentamiento humano La Molina”, operación y mantenimiento del sistema en su conjunto, en la zona en estudio.
- Recreación, áreas verdes y entorno ecológico.
- Educación de la comunidad sobre la importancia del saneamiento.
- Disminución de los gastos en tratamiento de enfermos.
• Costos más bajos por metro cúbico tratado.
• Conservación del agua para periodos de estiajes.
• Disminución de la carga orgánica lanzada a los ríos.
• Disminución de carga microbiológica descargada al medio ambiente.
• Disminución de enfermedades.
• Entorno ecológico, mejora en paisaje, recreación.
CAPÍTULO V

DETERMINACIÓN DE LA VALORACIÓN ECONÓMICA

En este capítulo se determinará cuáles son las variables que explican los cambios o efectos sobre la disponibilidad a pagar por el servicio de agua potable y alcantarillado en el AA.HH. La Molina (DAP). Para alcanzar el objetivo propuesto de esta investigación, se utiliza la metodología de valoración contingente. Se realiza una pregunta por un valor predeterminado de la disponibilidad a pagar con respuestas discretas (SI/NO). Esto se logra en dos etapas: (i) se ubicará individualmente las variables estadísticamente significativas, y (ii) se probará cuáles de esas variables seleccionadas, en conjunto explican de manera significativa la disponibilidad a pagar.

Para ambos pasos se utilizó el método de regresión logística (Logit y Probit)23 que muestra las relaciones estadísticamente significativas entre la variable dependiente y cada una de las variables independientes. Dicho método de regresión, además permite determinar la probabilidad de que exista un cambio en la variable dependiente, de acuerdo a la influencia que cada variable independiente tiene sobre ésta.

V.1 Especificación del modelo

Para determinar cuáles son las variables que explican los cambios en las probabilidades sobre la disponibilidad a pagar por el servicio de agua potable y alcantarillado en el AA.HH. La Molina, se procederá a determinar cuáles son esas variables estadísticamente representativas y entre ellas, determinar cuáles son las que tienen el mayor poder explicativo sobre el variable objeto de estudio.

Cuadro N° 5.1
DEFINICIÓN DE LAS PRINCIPALES VARIABLES

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>DEFINICIÓN</th>
<th>UNIDAD DE MEDIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable Endógena Dependiente Dicotómica</td>
<td>Disponibilidad a pagar por el servicio de agua potable y alcantarillado</td>
<td>Var. Dummyv</td>
</tr>
<tr>
<td>DAP</td>
<td>1: Si</td>
<td>0: No</td>
</tr>
</tbody>
</table>

Variables Exógenas e Independientes

<table>
<thead>
<tr>
<th>SEXO</th>
<th>Sexo del Encuestado</th>
<th>Var. Dummyv</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDAD</td>
<td>Edad del encuestado</td>
<td>En años cumplidos</td>
</tr>
<tr>
<td>ESTADOCIVIL</td>
<td>Estado civil y conyugal del encuestado</td>
<td>Var. Ordinal</td>
</tr>
<tr>
<td>INGRFAM</td>
<td>Ingresos mensuales totales del hogar</td>
<td></td>
</tr>
<tr>
<td>PROVAGUA</td>
<td>Lugar de donde proviene el agua que hacen uso los pobladores del AAHH La Molina en sus quehaceres diarios</td>
<td>Var. Ordinal</td>
</tr>
<tr>
<td>EDUC</td>
<td>Nivel educativo del encuestado</td>
<td>Var. Ordinal</td>
</tr>
<tr>
<td>TAMP</td>
<td>Número de hijos que se encuentran bajo un mismo techo</td>
<td>Var. Ordinal</td>
</tr>
<tr>
<td>CALIDAGUA</td>
<td>Calidad que le colocan los pobladores al agua que consumen a diario</td>
<td>Var. Ordinal</td>
</tr>
<tr>
<td>IMPORTAGUA</td>
<td>Importancia que le dan al agua potable en la población</td>
<td>Var. Ordinal</td>
</tr>
<tr>
<td>PADENFERM</td>
<td>Padeimiento de alguna enfermedad a consecuencia del consumo de agua</td>
<td>Var. Dummyv</td>
</tr>
<tr>
<td>Fuente: Encuesta aplicada – Julio 2014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
El modelo propuesto viene dado por la siguiente función:

\[
\text{Disponibilidad a pagar por el servicio de agua potable y alcantarillado } = f (\text{Sexo del encuestado, Edad del encuestado, Estado civil y conyugal del encuestado, Ingresos mensuales totales del hogar, Lugar de donde proviene el agua que hacen uso los pobladores del AA.HH La Molina en sus quehaceres diarios, Nivel educativo del encuestado, Número de hijos que se encuentran bajo un mismo techo, Calidad que le colocan los pobladores al agua que consumen a diario, Importancia que le dan al agua potable en la población y padecimiento de alguna enfermedad a consecuencia del consumo de agua)}
\]

En forma abreviada se tiene:

\[
\text{DAP}_i = f(\text{SEXO}_i, \text{EDAD}_i, \text{ESTADCIVIL}_i, \text{INGRFAM}_i, \text{PROVAGUA}_i, \text{EDUC}_i, \text{TAMF}_i, \text{CALIDAGUA}_i, \text{IMPORTAGUA}_i, \text{PAHENFERM}_i)
\]

El modelo en su planteamiento económico es el siguiente:

\[
\text{DAP}_i = \alpha_0 + \alpha_1 \text{SEXO}_i + \alpha_2 \text{EDAD}_i + \alpha_3 \text{ESTADCIVIL}_i + \alpha_4 \text{INGRFAM}_i + \alpha_5 \text{PROVAGUA}_i + \alpha_6 \text{EDUC}_i + \alpha_7 \text{TAMF}_i + \alpha_8 \text{CALIDAGUA}_i + \alpha_9 \text{IMPORTAGUA}_i + \alpha_{10} \text{PAHENFERM}_i
\]

Mientras que el modelo en su forma econometrica es el siguiente:

\[
\text{DAP}_i = \alpha_0 + \alpha_1 \text{SEXO}_i + \alpha_2 \text{EDAD}_i + \alpha_3 \text{ESTADCIVIL}_i + \alpha_4 \text{INGRFAM}_i + \alpha_5 \text{PROVAGUA}_i + \alpha_6 \text{EDUC}_i + \alpha_7 \text{TAMF}_i + \alpha_8 \text{CALIDAGUA}_i + \alpha_9 \text{IMPORTAGUA}_i + \alpha_{10} \text{PAHENFERM}_i + \varepsilon_i
\]

V.2 Hipótesis de trabajo

- \(\alpha_0 \): Parámetro Autónomo.
- \(\alpha_1 > < 0 \): Representa el grado de sensibilidad de la variable dependiente cualitativa respecto al Sexo. Su influencia puede ser positiva o negativo, el signo de este parámetro nos permitirá establecer el efecto de la variable sexo sobre la variable dependiente cualitativa: disponibilidad a pagar por el servicio de agua potable y alcantarillado.
\[\alpha_1 = \frac{\partial DAP}{\partial SEXO} > 0 \]

- \(\alpha_2 > 0 \): Representa el grado de sensibilidad de la variable dependiente cualitativa respecto a la Edad, cuyo impacto puede ser positivo o negativo.

\[\alpha_2 = \frac{\partial DAP}{\partial EDAD} > 0 \]

- \(\alpha_3 < 0 \): Representa el grado de sensibilidad de la variable dependiente cualitativa respecto al Estado civil y conyugal, se espera una relación directa entre dicha variable y la variable dependiente. Un cambio en la condición civil o conyugal, aumenta la probabilidad sobre la disponibilidad a pagar por el servicio de agua potable y alcantarillado.

\[\alpha_3 = \frac{\partial DAP}{\partial ESTADOCIVIL} > 0 \]

- \(\alpha_4 > 0 \): Representa el grado de sensibilidad de la variable dependiente cualitativa respecto al Ingreso familiar, su signo se espera sea positivo, un incremento en los ingresos mensuales percibidos aumenta la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado.

\[\alpha_4 = \frac{\partial DAP}{\partial INGRFAM} > 0 \]

- \(\alpha_5 > 0 \): Representa el grado de sensibilidad de la variable dependiente cualitativa respecto al lugar de donde proviene el agua para consumo, se espera que sea de signo positivo. Un cambio del lugar donde proviene el agua aumenta la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado.

\[\alpha_5 = \frac{\partial DAP}{\partial PROVAGUA} > 0 \]

- \(\alpha_6 > 0 \): Representa el grado de sensibilidad de la variable dependiente cualitativa respecto al nivel educativo del encuestado, se espera que sea de signo positivo. Un mayor nivel educativo aumenta la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado.
\[
\alpha_6 = \frac{\partial \text{DAP}}{\partial \text{EDUC}} > 0
\]

- \(\alpha_7 > 0 \): Representa el grado de sensibilidad de la variable dependiente cualitativa respecto al número de hijos que se encuentran bajo un mismo techo, se espera que sea de signo positivo. Un mayor número de hijos aumenta la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado.

\[
\alpha_7 = \frac{\partial \text{DAP}}{\partial \text{TAMF}} > 0
\]

- \(\alpha_8 > 0 \): Representa el grado de sensibilidad de la variable dependiente cualitativa respecto a la calidad que le colocan los pobladores al agua que consumen, se espera que sea de signo positivo. Una mayor calidad en el agua para consumo aumenta la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado.

\[
\alpha_8 = \frac{\partial \text{DAP}}{\partial \text{CALIDAGUA}} > 0
\]

- \(\alpha_9 > 0 \): Representa el grado de sensibilidad de la variable dependiente cualitativa respecto a la importancia que le dan los pobladores al agua potable, tiene relación directa con la variable dependiente, puesto que a mayor importancia en la valoración del agua potable aumenta la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado.

\[
\alpha_{10} = \frac{\partial \text{DAP}}{\partial \text{IMPORTAGUA}} > 0
\]

- \(\alpha_{10} > 0 \): Representa el grado de sensibilidad de la variable dependiente respecto al padecimiento de alguna enfermedad a consecuencia del consumo de agua, se espera que exista relación directa entre dicha variable y la variable dependiente. Un aumento en el padecimiento de enfermedades en la población, aumenta la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado.

\[
\alpha_{11} = \frac{\partial \text{DAP}}{\partial \text{PADENFERM}} > 0
\]
V.3 Construcción del modelo logit y probit

Como ya se indicó líneas arriba, para verificar las hipótesis planteadas e identificar a las variables determinantes de la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado en el AA.HH La Molina, haremos uso de los métodos de regresión Logit y Probit.

V.3.1 Regresiones univariantes

Utilizando el modelo Logit y Probit, en este sub capítulo identificaremos los principales determinantes de la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado de la población del AA.HH La Molina. En las regresiones, se tendrán en cuenta los criterios de signos esperados, significancia estadística y bondad de ajuste:

- Por el criterio de los signos podemos apreciar que todas las variables cumplen con los signos esperados con la excepción de las variables Estado civil y conyugal (ESTADCIVIL), lugar de donde proviene el agua para consumo (PROVAGUA) y disposición a pagar por el mejoramiento del agua potable y alcantarillado (DISPAGAR), puesto que no cumplen con los signos especificados en las hipótesis de trabajo por lo que quedan eliminados de nuestro modelo.
- El criterio del nivel de significancia nos dice que se deberían eliminar las variables sexo del encuestado (SEXO), edad del encuestado (EDAD) y nivel educativo alcanzado (EDUC), puesto que son no significativas al 10 por ciento.
Cuadro N° 5.2
DETERMINACIÓN DE LAS VARIABLES SIGNIFICATIVAS

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>COEFICIENTE</th>
<th>Z - CALCULADO</th>
<th>R² Mc Fadden</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXO</td>
<td>0.181346</td>
<td>0.624214</td>
<td>0.001241</td>
</tr>
<tr>
<td>EDAD</td>
<td>-0.010788</td>
<td>-0.921945</td>
<td>0.002707</td>
</tr>
<tr>
<td>ESTADOCIVIL</td>
<td>-0.00675</td>
<td>-0.007822</td>
<td>0.000000</td>
</tr>
<tr>
<td>INGRFAM</td>
<td>0.522964</td>
<td>4.329184*</td>
<td>0.069645</td>
</tr>
<tr>
<td>PROVAGUA</td>
<td>-0.032945</td>
<td>-0.096383</td>
<td>0.000030</td>
</tr>
<tr>
<td>EDUC</td>
<td>0.074322</td>
<td>0.708316</td>
<td>0.001610</td>
</tr>
<tr>
<td>TAMF</td>
<td>0.643589</td>
<td>5.768384*</td>
<td>0.121310</td>
</tr>
<tr>
<td>CALIDAGUA</td>
<td>0.801286</td>
<td>3.613954*</td>
<td>0.042870</td>
</tr>
<tr>
<td>IMPORTAGUA</td>
<td>0.788957</td>
<td>5.257338*</td>
<td>0.092656</td>
</tr>
<tr>
<td>PADENFERM</td>
<td>0.901162</td>
<td>2.969587*</td>
<td>0.027163</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>COEFICIENTE</th>
<th>Z - CALCULADO</th>
<th>R² Mc Fadden</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXO</td>
<td>0.103147</td>
<td>0.622889</td>
<td>0.001241</td>
</tr>
<tr>
<td>EDAD</td>
<td>-0.006086</td>
<td>-0.915101</td>
<td>0.002682</td>
</tr>
<tr>
<td>ESTADOCIVIL</td>
<td>-0.000382</td>
<td>-0.007810</td>
<td>0.000000</td>
</tr>
<tr>
<td>INGRFAM</td>
<td>0.293124</td>
<td>4.459549*</td>
<td>0.069947</td>
</tr>
<tr>
<td>PROVAGUA</td>
<td>-0.019026</td>
<td>-0.097159</td>
<td>0.000030</td>
</tr>
<tr>
<td>EDUC</td>
<td>0.042280</td>
<td>0.709170</td>
<td>0.001614</td>
</tr>
<tr>
<td>TAMF</td>
<td>0.357192</td>
<td>5.890654*</td>
<td>0.119204</td>
</tr>
<tr>
<td>CALIDAGUA</td>
<td>0.470285</td>
<td>3.677005*</td>
<td>0.044039</td>
</tr>
<tr>
<td>IMPORTAGUA</td>
<td>0.447637</td>
<td>5.251032*</td>
<td>0.090910</td>
</tr>
<tr>
<td>PADENFERM</td>
<td>0.521704</td>
<td>2.930920*</td>
<td>0.027163</td>
</tr>
</tbody>
</table>

*Significativo al 1%.

Elaboración: Propia
Fuente: Encuesta aplicada - Julio 2014

Por lo tanto nos quedan las variables: Ingresos mensuales totales del hogar (INGRFAM), Número de hijos que se encuentran bajo un mismo techo (TAMF), Calidad que le colocan los pobladores al agua que consumen a diario (CALIDAGUA), Importancia que le dan al agua potable en la población (IMPORTAGUA) y el padecimiento de alguna enfermedad a consecuencia del consumo de agua (PADENFERM).
Cuadro Nº 5.3
DETERMINACIÓN DE LAS VARIABLES SIGNIFICATIVAS

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>SIGNO ESPERADO</th>
<th>SIGNO OBTENIDO</th>
<th>SIGNIFICANCIA ESTADÍSTICA</th>
<th>R^2 DE麥DADDEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXO</td>
<td>±</td>
<td>+</td>
<td>No Significativo</td>
<td>Bajo</td>
</tr>
<tr>
<td>EDAD</td>
<td>±</td>
<td>−</td>
<td>No Significativo</td>
<td>Bajo</td>
</tr>
<tr>
<td>ESTADOCIVIL</td>
<td>+</td>
<td>−</td>
<td>No Significativo</td>
<td>Bajo</td>
</tr>
<tr>
<td>INGRFAM</td>
<td>+</td>
<td>+</td>
<td>Altamente significativo</td>
<td>Bajo</td>
</tr>
<tr>
<td>PROVAGUA</td>
<td>+</td>
<td>−</td>
<td>No Significativo</td>
<td>Bajo</td>
</tr>
<tr>
<td>EDUC</td>
<td>+</td>
<td>+</td>
<td>No Significativo</td>
<td>Bajo</td>
</tr>
<tr>
<td>TAMF</td>
<td>+</td>
<td>+</td>
<td>Altamente significativo</td>
<td>Regular</td>
</tr>
<tr>
<td>CALIDAGUA</td>
<td>+</td>
<td>+</td>
<td>Altamente significativo</td>
<td>Bajo</td>
</tr>
<tr>
<td>IMPORTAGUA</td>
<td>+</td>
<td>+</td>
<td>Altamente significativo</td>
<td>Bajo</td>
</tr>
<tr>
<td>PADERNFERM</td>
<td>+</td>
<td>+</td>
<td>Altamente significativo</td>
<td>Bajo</td>
</tr>
</tbody>
</table>

Elaboración: Propia
Fuente: Encuesta aplicada - Julio 2014

V.3.2 Análisis de correlaciones

Para estimar correctamente el modelo discreto, en primer lugar, analizaremos la matriz de correlaciones entre la variable dependiente y el conjunto de posibles variables explicativas. A partir de ella se busca rescatar dos cosas: (a) establecer el grado de relación de las explicativas y la dependiente, así como su signo esperado; y (b) identificar la posible correlación entre las explicativas potenciales. Siguiendo la regla práctica, si dos variables tienen una correlación mayor a 50 por ciento se debe elegir a aquel que ajuste mejor.

Cuadro Nº 5.4
MATRIZ DE CORRELACIONES DE LAS PRINCIPALES VARIABLES

<table>
<thead>
<tr>
<th></th>
<th>CALIDAGUA</th>
<th>INGRFAM</th>
<th>IMPORTAGUA</th>
<th>PADERNFERM</th>
<th>TAMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALIDAGUA</td>
<td>1.000000</td>
<td>0.084783</td>
<td>0.096808</td>
<td>0.013992</td>
<td>-0.010694</td>
</tr>
<tr>
<td>INGRFAM</td>
<td>0.084783</td>
<td>1.000000</td>
<td>0.012955</td>
<td>0.060624</td>
<td>-0.008072</td>
</tr>
<tr>
<td>IMPORTAGUA</td>
<td>0.096808</td>
<td>0.012955</td>
<td>1.000000</td>
<td>0.003020</td>
<td>0.117067</td>
</tr>
<tr>
<td>PADERNFERM</td>
<td>0.013992</td>
<td>0.060624</td>
<td>0.003020</td>
<td>1.000000</td>
<td>0.074029</td>
</tr>
<tr>
<td>TAMF</td>
<td>-0.010694</td>
<td>-0.008072</td>
<td>0.117067</td>
<td>0.074029</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Elaboración: Propia
Fuente: Encuesta aplicada - Julio 2014

76
Según la matriz de correlaciones expuesta en el cuadro N° 5.4, se puede observar que no existen variables explicativas cuyo grado de asociación lineal sea mayor al 50 por ciento, lo cual nos invita a no eliminar ninguna variable explicativa al no existir multicolinealidad de mayor grado.

Luego, debemos analizar tablas cruzadas entre la variable dependiente y las variables explicativas que se muestran en el cuadro N° 5.4. A través de este análisis se pretende confirmar la dirección y la magnitud de la relación entre la dependiente y las explicativas.

Cuadro N° 5.5

MATRIZ DE CORRELACIONES CRUZADAS DE LAS PRINCIPALES VARIABLES

<table>
<thead>
<tr>
<th></th>
<th>DAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAP</td>
<td>1.000000</td>
</tr>
<tr>
<td>CALIDAGUA</td>
<td>0.207711</td>
</tr>
<tr>
<td>INGRFAM</td>
<td>0.251784</td>
</tr>
<tr>
<td>IMPORTAGUA</td>
<td>0.313871</td>
</tr>
<tr>
<td>PADENFERM</td>
<td>0.169204</td>
</tr>
<tr>
<td>TAMF</td>
<td>0.344931</td>
</tr>
</tbody>
</table>

Elaboración: Propia
Fuente: Encuesta aplicada – Julio 2014

Según los resultados del cuadro N° 5.5, los ingresos mensuales totales del hogar (INGRFAM), número de hijos que se encuentran bajo un mismo techo (TAMF), Calidad que le colocan los pobladores al agua que consumen a diario (CALIDAGUA), Importancia que le dan al agua potable en la población (IMPORTAGUA) y el Padecimiento de alguna enfermedad a consecuencia del consumo de agua (PADENFERM), afecta en sentido directo a la disponibilidad a pagar por el servicio de agua potable y alcantarillado (DAP).

Luego de haber procedido econométricamente, el resultado final arroja que las variables relevantes que explican significativamente el cambio o efecto sobre la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado (DAP) son: Ingresos mensuales totales del hogar (INGRFAM), Número de hijos que se encuentran bajo un mismo techo (TAMF), Calidad que le colocan los pobladores al agua que consumen a diario (CALIDAGUA), Importancia que le dan al agua potable en la población (IMPORTAGUA) y el Padecimiento de alguna enfermedad a consecuencia del consumo de agua (PADENFERM).
V.3.3 Estimación del modelo logit y probit

Estimando el modelo especificado, se obtienen los resultados expuestos en el cuadro Nº 5.6. Los resultados hallados con los métodos Logit y Probit, son similares. Si bien, pese a que podemos efectuar el análisis con cualquiera de ellos, basándonos en los criterios de Akaike, Hannan – Quinn, Schwarz y bondad de ajuste, concluimos que el hallado por el modelo Probit es el más óptimo.

Tanto para el modelo Probit como el Logit, las variables que tienen un impacto altamente significativo sobre la disponibilidad a pagar por el servicio de agua potable y alcantarillado (DAP), son: los ingresos mensuales totales del hogar (INGRFAM), Número de hijos que se encuentran bajo un mismo techo (TAMF), Calidad que le colocan los pobladores al agua que consumen a diario (CALIDAGUA), Importancia que le dan al agua potable en la población (IMPORTAGUA) y el Padecimiento de alguna enfermedad a consecuencia del consumo de agua (PADENFERM).

Cuadro Nº 5.6

RESULTADOS DE LA REGRESIÓN

<table>
<thead>
<tr>
<th>Variables Explicativas</th>
<th>Variable Dependiente (DAP)</th>
<th>Modelo Logit</th>
<th>Modelo Probit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercepto</td>
<td></td>
<td>-8.063140*</td>
<td>-6.163391*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.243305)</td>
<td>(0.6579015)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[-6.455247]</td>
<td>[-6.720600]</td>
</tr>
<tr>
<td>CALIDAGUA</td>
<td></td>
<td>0.946308*</td>
<td>0.534864*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.284408)</td>
<td>(0.157834)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[3.327285]</td>
<td>[3.327285]</td>
</tr>
<tr>
<td>INGRFAM</td>
<td></td>
<td>0.620825*</td>
<td>0.362999*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.1645205)</td>
<td>(0.080817)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[4.275533]</td>
<td>[4.491589]</td>
</tr>
<tr>
<td>IMPORTAGUA</td>
<td></td>
<td>0.862312*</td>
<td>0.490227*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.181365)</td>
<td>(0.100066)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[4.755469]</td>
<td>[4.899032]</td>
</tr>
<tr>
<td>PADENFERM</td>
<td></td>
<td>1.049854*</td>
<td>0.617577*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.355243)</td>
<td>(0.214501)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[2.725170]</td>
<td>[2.879134]</td>
</tr>
<tr>
<td>TAMF</td>
<td></td>
<td>0.761269*</td>
<td>0.415670*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.139832)</td>
<td>(0.073769)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[5.444181]</td>
<td>[5.599473]</td>
</tr>
</tbody>
</table>

Principales Estadísticas

<table>
<thead>
<tr>
<th></th>
<th>Modelo Logit</th>
<th>Modelo Probit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R² Mc - Fadden</td>
<td>0.340930</td>
<td>0.341715</td>
</tr>
<tr>
<td>Criterio Akaike</td>
<td>0.679603</td>
<td>0.678838</td>
</tr>
<tr>
<td>Criterio Schwarz</td>
<td>0.750259</td>
<td>0.749494</td>
</tr>
<tr>
<td>Criterio Hannan – Quinn</td>
<td>0.707817</td>
<td>0.707053</td>
</tr>
<tr>
<td>T</td>
<td>234</td>
<td>234</td>
</tr>
</tbody>
</table>

Nota: Las cantidades entre paréntesis y corchetes bajo los coeficientes son los errores estándar y los z - calculados respectivamente.

*Significativo al 1%.
Elaboración: Propia
Fuente: Encuesta aplicada – Julio 2014
V.4 Evaluación del modelo Probit

Para que un modelo tenga validez debe pasar previamente por una serie de pruebas que demuestren algunas propiedades de los residuos y de los parámetros que deben estar presentes en la estimación realizada en el modelo Probit.

V.4.1 Evaluación estadística

En lo que respecta a la significancia individual, todos los parámetros son altamente significativos al 1 por ciento, puesto que el z-estadístico es mayor al z-tabla (2) y la probabilidad asociada a dichos parámetro es menor al 1 por ciento, con lo cual no se permite rechazar la hipótesis de significancia estadística.

En lo referente a la significancia global se observa que el estadístico LR de la regresión del modelo Probit es altamente significativo, puesto que dicho estadístico es superior al valor de tabla ($X^2_{(0.95, 5)}$) que es 11.0705, por tanto concluimos que conjuntamente todos los coeficientes asociados a las variables ingresos mensuales totales del hogar ($INGRFAM$), Número de hijos que se encuentran bajo un mismo techo ($TAMF$), Calidad que le colocan los pobladores al agua que consumen a diario ($CALIDAGUA$), Importancia que le dan al agua potable en la población ($IMPORTAGUA$) y el Padecimiento de alguna enfermedad a consecuencia del consumo de agua ($PADENFERM$).

La regla práctica nos dice que este valor debe encontrarse entre 0.2 y 0.6 para considerarse aceptable en el contexto de la modelización de probabilidades. Como puede apreciarse en el cuadro N° 5.7 la regresión del modelo Probit exhibe niveles de bondad de ajuste que se encuentran dentro de este rango, con lo cual concluimos que entre el 34 al 45 por ciento de los cambios en la probabilidad sobre la disponibilidad a pagar por el servicio de agua potable y alcantarillado (DAP), son explicadas conjuntamente por los cambios en las probabilidades en ingresos mensuales totales del hogar ($INGRFAM$), Número de hijos que se encuentran bajo un mismo techo ($TAMF$), Calidad que le colocan los pobladores al agua que consumen a diario ($CALIDAGUA$), Importancia que le dan al agua potable en la población ($IMPORTAGUA$) y el Padecimiento de alguna enfermedad a consecuencia del consumo de agua ($PADENFERM$).
Cuadro Nº 5.7
BONDAD DE AJUSTE DEL MODELO PROBIT

<table>
<thead>
<tr>
<th>COEFICIENTE DE BONDAD</th>
<th>FORMULA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R^2) de Correlación</td>
<td>((r_{y,y})^2)</td>
</tr>
<tr>
<td>(R^2) de Effron</td>
<td>[1 - \frac{n}{n_1 n_2} \sum_{i=1}^{k} (Y_i - \hat{y}_i)^2]</td>
</tr>
<tr>
<td>(R^2) de Mc - Fadden</td>
<td>[1 - \frac{\ln L_{UR}}{\ln L_R}]</td>
</tr>
<tr>
<td>(R^2) de Cragg - Uhler</td>
<td>[\frac{\left(L_{UR}^{2/n} - \frac{1}{n} L_R^{2/n}\right)}{L_{UR}^{2/n} - \frac{1}{n} L_R^{2/n}}]</td>
</tr>
<tr>
<td>(R^2) de Conteo</td>
<td>Número de predicciones correctas</td>
</tr>
</tbody>
</table>

Elaboración: Propia

Fuente: Encuesta aplicada – Julio 2014

V.4.2 Análisis de los residuos

Para comprobar que los errores tienen una distribución normal se utilizó el test de Jarque - Bera. La hipótesis nula de este test es: que los residuos tienen una distribución normal. Para el caso de ambos modelos, el test permite rechazar que la distribución de los errores es normal en las ecuaciones (ver cuadros Nº 5.7).

La varianza de los residuos debe ser constante, es decir, debe existir homoscedasticidad. Para comprobarlo se utiliza el test ARCH, cuya hipótesis nula es que los errores no tienen un patrón heteroscedástico de orden (i). Como puede apreciarse en el cuadro Nº 8 no existe heteroscedasticidad autorregresiva de orden uno, dos, tres y cuatro, puesto que la probabilidad asociada no permite rechazar la hipótesis nula. Asimismo se realizaron las pruebas de White con términos cruzados y sin términos cruzados y la prueba de Breusch - Pagan - Godfrey cuya hipótesis nula es: que los residuos son homoscedásticos llegando a la conclusión de que los residuos son heteroscedásticos.
Cuadro N° 5.8
RESULTADOS DE LAS PRUEBAS DE DIAGNÓSTICO DEL MODELO DE REGRESIÓN

<table>
<thead>
<tr>
<th>Prueba</th>
<th>Distribución o Estadístico</th>
<th>Probabilidad Asociada</th>
<th>Resultados al 5% de Significancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Coeficiente de:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALIDADAGUA</td>
<td>z: 3.388781</td>
<td>0.0007</td>
<td>Altamente significativo</td>
</tr>
<tr>
<td>INGRESO</td>
<td>z: 4.491589</td>
<td>0.0000</td>
<td>Altamente significativo</td>
</tr>
<tr>
<td>IMPORTAGUA</td>
<td>z: 4.899052</td>
<td>0.0000</td>
<td>Altamente significativo</td>
</tr>
<tr>
<td>PADENFERM</td>
<td>z: 2.879134</td>
<td>0.0040</td>
<td>Altamente significativo</td>
</tr>
<tr>
<td>TEMPE</td>
<td>z: 5.599473</td>
<td>0.0000</td>
<td>Altamente significativo</td>
</tr>
<tr>
<td>Global</td>
<td>LR: 106.5336</td>
<td>0.0000</td>
<td>Altamente significativos</td>
</tr>
<tr>
<td>2. Residuales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalidad (JB)</td>
<td>Σ²: 115.7391</td>
<td>0.0000</td>
<td>No se dist. normalmente</td>
</tr>
<tr>
<td>ARCH (1)</td>
<td>F: 0.220221</td>
<td>0.639194</td>
<td>Homoscedástico</td>
</tr>
<tr>
<td>ARCH (2)</td>
<td>F: 0.115147</td>
<td>0.891272</td>
<td>Homoscedástico</td>
</tr>
<tr>
<td>ARCH (3)</td>
<td>F: 0.171729</td>
<td>0.915454</td>
<td>Homoscedástico</td>
</tr>
<tr>
<td>ARCH (4)</td>
<td>F: 0.138393</td>
<td>0.967946</td>
<td>Homoscedástico</td>
</tr>
<tr>
<td>White (nc)</td>
<td>F: 7.811848</td>
<td>0.000001</td>
<td>Heteroscedástico</td>
</tr>
<tr>
<td>White (ct)</td>
<td>F: 3.636509</td>
<td>0.000001</td>
<td>Heteroscedástico</td>
</tr>
<tr>
<td>Breusch - Pagan - Godfrey</td>
<td>F: 7.835001</td>
<td>0.000001</td>
<td>Heteroscedástico</td>
</tr>
<tr>
<td>LM (1)</td>
<td>F: 0.058941</td>
<td>0.8083</td>
<td>No autocorr. Orden 1</td>
</tr>
<tr>
<td>LM (2)</td>
<td>F: 0.030039</td>
<td>0.9704</td>
<td>No autocorr. Orden 2</td>
</tr>
<tr>
<td>LM (3)</td>
<td>F: 0.330997</td>
<td>0.8029</td>
<td>No autocorr. Orden 3</td>
</tr>
<tr>
<td>LM (4)</td>
<td>F: 1.597222</td>
<td>0.1749</td>
<td>No autocorr. Orden 4</td>
</tr>
<tr>
<td>Q Stat (1)</td>
<td>0.0616</td>
<td>0.8040</td>
<td>No autocorr. Orden 1</td>
</tr>
<tr>
<td>Q Stat (2)</td>
<td>0.0659</td>
<td>0.9680</td>
<td>No autocorr. Orden 2</td>
</tr>
<tr>
<td>Q Stat (3)</td>
<td>1.0938</td>
<td>0.7790</td>
<td>No autocorr. Orden 3</td>
</tr>
<tr>
<td>Q Stat (4)</td>
<td>6.5401</td>
<td>0.1620</td>
<td>No autocorr. Orden 4</td>
</tr>
<tr>
<td>3. Ajuste y Predicción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hosmer Lemeshow</td>
<td>H-L: 2.7449</td>
<td>0.7392</td>
<td>Mod. Tiene buen ajuste</td>
</tr>
<tr>
<td>Expectation Prediction</td>
<td>84.69</td>
<td></td>
<td>Mod. Tiene buena predicción</td>
</tr>
</tbody>
</table>

Σ² = Coeficiente de determinación.
F = Estadístico “F”
ARCH (i) = Estadístico para la prueba de heteroscedasticidad condicional autoregresiva de orden i.
White = Estadístico para la prueba de heteroscedasticidad de White, con términos cruzados (ct) y sin términos cruzados (nc).
LM (i) = Multiplicador de Lagrange, para correlación serial de grado i de Breusch – Godfrey.
Q – Stat (i) = Test Q de Ljung - Box de correlación serial de los residuos para muestras pequeñas

Elaboración: Propia
Fuente: Encuesta aplicada – Julio 2014
Para que sean innovaciones, es necesario que los errores no estén correlacionados, es decir, que los errores pasados no tengan ninguna incidencia sobre el actual. Para comprobarlo, se utilizó el test de correlación serial de los residuos conocido como Multiplicador de Lagrange. La hipótesis nula de este test es que no existe autocorrelación entre los residuos. Para el modelo Probit, este test permite aceptar la hipótesis nula de ausencia de autocorrelación serial en los residuos hasta el cuarto orden. Si bien los valores de la probabilidad son mayores que 5 por ciento, adicionalmente se utilizó el test Box Pearce que permite corroborar que no existe correlación de los errores con un nivel más alto de significancia (ver cuadro N°5.8).

V.4.3 Ajuste y predicción

El test de Hosmer – Lemeshow parte de agrupar las observaciones en quantiles y evalúa el desempeño del modelo en cada uno de ellos en términos del número de observaciones que predice el modelo que deben ubicarse en cada quantil vs el número de observaciones real. La hipótesis nula es que el modelo tiene buen ajuste. Observando el estadístico H-L y la probabilidad asociada se acepta la hipótesis nula, es decir, el modelo tiene buen ajuste.

La prueba Expectation Prediction nos permite averiguar cuál es el porcentaje de acierto en las predicciones que obtiene el modelo. El porcentaje correcto TOTAL de predicción del modelo Probit es del 84.69 por ciento, de un total de 320 observaciones, 259 pobladores están dispuestos a pagar por el servicio de agua potable y alcantarillado, de los cuales el modelo ha acertado en 245 observaciones, respecto a los pobladores que no están dispuestos a pagar por el servicio de agua potable y alcantarillado, de un total 61 observaciones el modelo ha acertado en 26 de las observaciones. Asimismo el porcentaje de ganancia de la predicción es 19.67 por ciento.

V.5 EFECTOS MARGINALES

Antes de proceder con los impactos marginales sobre la probabilidad de pagar por el servicio de agua potable y alcantarillado primero debemos corregir el problema de la heteroscedasticidad en los residuos del modelo Probit y Logit. Como puede observarse en el cuadro N° 5.9 los resultados no difieren de los presentados en la estimación anterior, llegando a concluir que el modelo Probit brinda la mejor estimación al poseer los menores criterios y la mayor bondad de ajuste.
Cuadro N° 5.9
RESULTADOS DE LA REGRESIÓN

<table>
<thead>
<tr>
<th>Variables Explicativas</th>
<th>Variable Dependiente (DAP)</th>
<th>Modelo Logit</th>
<th>Modelo Probit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercepto</td>
<td>-8.063140*</td>
<td>-4.563391*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.103368)</td>
<td>(0.597381)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-7.307752]</td>
<td>[-7.639002]</td>
<td></td>
</tr>
<tr>
<td>CALIDAGUA</td>
<td>0.946308*</td>
<td>0.534864*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.270672)</td>
<td>(0.145704)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.496147]</td>
<td>[3.670897]</td>
<td></td>
</tr>
<tr>
<td>INGREFAM</td>
<td>0.620828*</td>
<td>0.362999*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.128292)</td>
<td>(0.069179)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[4.839177]</td>
<td>[5.247277]</td>
<td></td>
</tr>
<tr>
<td>IMPORTAGUA</td>
<td>0.862312*</td>
<td>0.490227*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.185959)</td>
<td>(0.101015)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[4.637119]</td>
<td>[4.853029]</td>
<td></td>
</tr>
<tr>
<td>PADENFERM</td>
<td>1.049854*</td>
<td>0.617577*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.396367)</td>
<td>(0.215283)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.648690]</td>
<td>[2.868680]</td>
<td></td>
</tr>
<tr>
<td>TAMF</td>
<td>0.761269*</td>
<td>0.413070*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.152756)</td>
<td>(0.076773)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[4.983562]</td>
<td>[5.380415]</td>
<td></td>
</tr>
</tbody>
</table>

Principales Estadísticas

<table>
<thead>
<tr>
<th></th>
<th>Modelo Logit</th>
<th>Modelo Probit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2 McFadden</td>
<td>0.340930</td>
<td>0.341715</td>
</tr>
<tr>
<td>Criterio Akaike</td>
<td>0.679603</td>
<td>0.678838</td>
</tr>
<tr>
<td>Criterio Schwarz</td>
<td>0.750259</td>
<td>0.749494</td>
</tr>
<tr>
<td>Criterio Hannan – Quinn</td>
<td>0.707817</td>
<td>0.707053</td>
</tr>
</tbody>
</table>

Nota: Las cantidades entre paréntesis y corchetes bajo los coeficientes son los errores estándar y los z-calculados respectivamente.

*Significativo al 1%.

Elaboración: Propia

Fuente: Encuesta aplicada - Julio 2014

Los efectos marginales se calculan tomando la media de todas las variables explicativas y nos servirá como una medida para identificar la variable que tiene mayor impacto en la probabilidad en la disponibilidad de pagar por el servicio de agua potable y alcantarillado. Para ello, calculamos los efectos marginales de cada una de las variables explicativas.

Los efectos de los cambios en las variables explicativas sobre las probabilidades de que cualquier observación pertenezca a uno de los dos grupos, son proporcionados por:
\[
\frac{\partial P_i}{\partial X_{ij}} = B_j \phi(Z_i) \text{ donde } Z_i = B_0 + \sum_{i=1}^{k} B_i X_{ij} \text{ y } \phi(Z_i) = \text{Función de densidad normal estándar}
\]

Cuadro Nº 5.10

EFECTOS MARGINALES DE LAS PRINCIPALES VARIABLES

<table>
<thead>
<tr>
<th></th>
<th>DAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALIDAGUA</td>
<td>0.151570</td>
</tr>
<tr>
<td>INGRFAM</td>
<td>0.102867</td>
</tr>
<tr>
<td>IMPORTAGUA</td>
<td>0.138920</td>
</tr>
<tr>
<td>PADENFERM</td>
<td>0.175009</td>
</tr>
<tr>
<td>TAMF</td>
<td>0.117056</td>
</tr>
</tbody>
</table>

Elaboración: Propia
Fuente: Encuesta aplicada – Julio 2014

Como se puede observar en el cuadro Nº 5.10, los factores determinantes de la disponibilidad a pagar por el servicio de agua potable y alcantarillado son básicamente el padecimiento de alguna enfermedad a consecuencia del consumo de agua (PADENFERM) y la calidad que le colocan los pobladores al agua que consumen (CALIDAGUA), siendo su impacto marginal promedio de 0.17 y 0.15 respectivamente. Importancia que le dan al agua potable en la población y Número de hijos que se encuentran bajo un mismo techo también tienen su contribución en la disponibilidad a pagar por el servicio de agua potable y alcantarillado, mientras que la importancia de los ingresos mensuales totales del hogar es sobre la disponibilidad a pagar por el servicio de agua potable y alcantarillado.

- \[\frac{\partial DAP_i}{\partial CALIDAGUA_{ij}} = B_2 \phi(Z_i) = 0.151570, \text{ Un aumento de la probabilidad del} \]
 1 por ciento en la variable calidad que le colocan los pobladores al agua que consumen, aumenta la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado en promedio igual en 0.151570 por ciento.
\[\frac{\partial \text{DAP}}{\partial \text{INGRFAM}_y} = B_3 \phi(Z_i) = 0.102867, \] Un aumento de la probabilidad del 1 por ciento en la variable ingresos mensuales totales del hogar, aumenta la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado en promedio igual en 0.102867 por ciento.

\[\frac{\partial \text{DAP}}{\partial \text{IMPORTAGUA}_y} = B_4 \phi(Z_i) = 0.138920, \] Un aumento de la probabilidad del 1 por ciento en la variable Importancia que le dan al agua potable en la población, aumenta la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado en promedio igual en 0.138920 por ciento.

\[\frac{\partial \text{DAP}}{\partial \text{PADENFERM}_y} = B_5 \phi(Z_i) = 0.175009, \] Un aumento de la probabilidad del 1 por ciento en la variable padecimiento de alguna enfermedad a consecuencia del consumo de agua, aumenta la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado en promedio igual en 0.175009 por ciento.

\[\frac{\partial \text{DAP}}{\partial \text{TAMF}_y} = B_6 \phi(Z_i) = 0.117056, \] Un aumento de la probabilidad del 1 por ciento en la variable Número de hijos que se encuentran bajo un mismo techo, aumenta la probabilidad en la disponibilidad a pagar por el servicio de agua potable y alcantarillado en promedio igual en 0.117056 por ciento.
CAPÍTULO VI
IMPLICACIONES DE POLÍTICA

- Una primera recomendación sería la creación de campañas informativas para educar a la población sobre todos los aspectos del tratamiento del agua desde su recolección hasta la puesta en el acueducto, informarle acerca de las fallas que presenta el sistema de distribución y sobre los niveles de consumo por persona que se incrementan día a día.

- Desarrollar programas y/o proyectos públicos que permitan dar a conocer, la situación ambiental, para lo cual, los gobiernos nacionales, regionales y/o locales deben realizar los proyectos que le generen la mayor rentabilidad económica, social y ambiental. Ello implica que, se puede establecer un Área que contenga los servicios básicos para la mejora de la calidad de vida de las personas que genere rentabilidad en relación al desarrollo de actividades alternativas.

- Implementación de mecanismos disuasivos, tal como programas de educación ambiental, acceso a información, presión social, persuasión y sensibilización social, etc. Políticas que pretendan internalizar la conciencia ambiental en el proceso de toma de decisiones y crear una conciencia ambiental que a largo plazo permita un desarrollo sostenible.
CONCLUSIONES Y RECOMENDACIONES

• El acceso al agua constituye un derecho humano fundamental. Sin su satisfacción se ve seriamente limitada la posibilidad de cumplir la amplia gama de derechos y libertades, consagradas en la constitución política del Perú.

• La valoración económica contribuye a cuantificar los beneficios sociales derivados de la provisión de servicios ambientales. Sin embargo, un estudio de valoración económica no arroja automáticamente el monto a pagar por los servicios ambientales. Constituye un dato útil en el cálculo de un rango o categoría de montos a pagar, sin embargo, no en todos los casos es necesario este tipo de estudios, ya que en algunos casos los actores involucrados mismos pueden acordar mediante sencillos arreglos, un monto de pago que satisfaga tanto a los beneficiarios como a quienes intervienen en la provisión de los servicios ambientales.

• Los resultados obtenidos en esta investigación corresponden a valores únicos, obtenidos en un momento determinado del tiempo, bajo condiciones propias de la situación y reflejan una relación específica del flujo y producción de servicios ambientales, así como de las características socioeconómicas de las familias de la zona de La Molina I. Por lo tanto, los resultados de este estudio no pueden ser utilizados para realizar conclusiones o inferencias sobre el valor económico aún del mismo servicio ambiental en otras áreas.

• Los resultados muestran que los entrevistados están dispuestos a pagar por la instalación del servicio de agua potable para mejorar su nivel de vida y disminuir la alta incidencia de enfermedades que existe en las localidades de estudio, así como también dejar una legado para las generaciones venideras.

• Una de las variables observadas que tiene impacto sobre la DAP de las personas es el nivel de ingresos en su vivienda, esto daría a entender que para un hogar de nivel de ingresos alto debe haber mayor disponibilidad que en los hogares de menor ingreso, sin embargo en la práctica esto no sucede.
• El 85.5% de los hogares manifiestan que el agua tiene mal sabor, el 85% maniosten que el agua tiene mal color; además como ya se mencionó antes el sistema de eliminación de excretas es deficiente, por lo que la eliminación de estas que existen en algunas viviendas, es a través de silos que no revisten ningún tipo de garantía sanitaria. En cuanto al olor del agua el 80% del total de encuestados respondieron que tiene un mal olor.

• Frente al problema de consumir agua no potable, pobladores de manera casera tratan el agua que consumen. Todos los entrevistados tratan el agua; el 32.5% primero purifican el agua con lejía y luego la hierven para poder consumirla, el 12.5% solo purifican el agua con lejía y el 55% solo la hierven.

• El 66% del total de entrevistados respondieron que “SI” estarían dispuestos a pagar y el 34% no está dispuesta a pagar por el cambio de la calidad de agua que consumen, pero es en una proporción pequeña. Además cabe decir que esta fue una pregunta en frío ya que aquí el entrevistador no le hablaba sobre los beneficios que se generarían el poder consumir agua potable; beneficios en cuanto a la salud y economía.

• Más del 50% de la población está dispuesto a pagar por consumir agua potable, debido por la alta incidencia en enfermedades a causa de consumir agua de dudosa procedencia. La mala calidad de agua que consumen los moradores de La Molina I, hace mayor la incidencia en enfermedades tales como: dolores estomacales, parasitosis, dermatitis.
1. BALL, Phillip
 2007 “Burning water and other myths”. Nature News
 Consultado 17 de febrero 2014
2. PÉREZ CONTRERAS; Oscar
 2000 “Valoración Económica Total de los Recursos Naturales”. I Curso de
 Valoración Económica de la Diversidad Biológica y Servicios
 Fecha De consulta: 26/10/2014
3. POSTIGO DE LA MOTTA; W.
 1995 “Economía, Medio Ambiente y Desarrollo Sostenible. Una introducción”
 Nota docente, Universidad Nacional Agraria de la Molina. Departamento
 Académico de Economía y Planificación
 Fecha De consulta: 13/11/2014
4. RAYMUNDO, Florín.
 1999 “Desarrollo Sostenible, el Diagnóstico de la Problemática”. Colombia.
 Universidad Católica de Chile. Alfa y Omega.
 Fecha De consulta: 17/10/2014
5. ENKERLIN, Ernesto, CANO Gerónimo, GARZA, Raúl Y VOGEL, Enrique
 1997 “Ciencia Ambiental y Desarrollo Sostenible”
 Fecha De consulta: 17/10/2014
 Consultado 15 de enero 2014.
7. J. KREPS, David M.
 1996 Teoría Microeconómica. 1era edición. España
 Consultado el día 16/01/2014
8. MONCHON Francisco y Alfonso Pajuelo
 1998 “Microeconomía” Madrid.
 Consultado 13/11/2014
9. BARRANTES Y CASTRO
1997 “Valoración económica del agua”
Consultado 24/11/2014

10. CASE, Karl
1997 Principios de la Economía
Consultado 13/07/2014

11. KAFKA, Floke
Perú.
Consultado enero 2014

9. PÉREZ, Contreras; Oscar

10. AZQUETA, Oyarzun. D.
1994 “Valoración económica de la calidad ambiental
Consultado julio 2014

11. Enkerlin, Cano y Vogel
1997 “Ciencia ambiental y desarrollo sostenido”
Consultado julio 2014

12. Samuelson y Nordhaus
2005 “Economía”

13. Kriström
1995 “Valoración económica de los recursos naturales”
ANEXO
Estoy realizando un estudio acerca de los beneficios sociales, económicos y ambientales derivados de la Valoración Económica del recurso hídrico en cuanto a la puesta en marcha del perfil de inversión pública de agua potable y alcantarillado, para lo cual necesitamos de su colaboración.

1.1 Sexo: () Masculino () Femenino
1.2 Estado civil: () Casado () Soltero () Viudo () Divorciado
1.3 Edad: _____
1.4 N°. De integrantes de la familia:
 Niños_____ Jóvenes_____ Adultos_____
1.5 Cuantos miembros de su familia son:
 Primaria completa_____ Primaria incompleta_____ Secundaria completa_____
 Secundaria incompleta_____ Técnico_____ Universitario_____ Otros_____
1.7 Podría elegir entre los siguiente rangos, donde se encuentra su ingreso familiar mensual en nuevos soles?
 a. Menor de 300
 b. 301 a 500
 c. 501 a 800
 d. 801 a 1000
 e. 1001 a 1500
 f. Mayor a 1500
II. Información sobre el agua potable y alcantarillado

Me interesa conocer sobre el servicio de agua y alcantarillado que recibe:

Agua Potable:

2.1 De donde proviene el agua que usted consume?
 a. Tubería
 b. Pozo
 c. Cisterna
 d. Pilón común
 e. Especifique: ..

2.2 Como considera el servicio actual?
 a. Bueno
 b. Malo
 c. Regular

2.3 Como considera la calidad de agua que usted recibe?
 a. Bueno
 b. Malo
 c. Regular

2.4 Cuantos días a la semana recibe usted agua el servicio de agua potable?
 días

2.5 Durante los días que recibe el servicio de agua, recibe el servicio:
 a. Todo el día
 b. Solamente por la mañana
 c. Solamente por la tarde
 d. Solamente por la noche

2.6 Durante los días que Usted recibe agua en su casa, ¿Cuántas horas al día recibe agua?
 Horas al día

2.7 Esta vivienda cuenta con algún tipo de almacenamiento de agua?
 a. Si
 b. No
 c. No sabe
 d. Especifique: ..
2.8 Cuanto gasta aproximadamente para el cuidado y mantenimiento de su almacén para el agua

2.9 Utiliza agua de tubería para beber?
 a. Si, directamente (sin hervir, filtrar o clorar)
 b. Si, después de tratamiento (hervida, filtrada o clorada)
 c. No, agua mineral o embotellada

2.10 Cuánto gasta aproximadamente en el tratamiento del agua para consumo humano?
---------------------------------Nuevos soles diario / semana / mes

2.11 Cuánto asciende su gasto en el consumo de agua para sus quehaceres diarios?
--------------------------------- Nuevos soles

2.12 Como le parece a usted lo que paga por el servicio de agua con respecto a la calidad del mismo?
 a. Relativamente bajo
 b. Más o menos correcto
 c. Relativamente alto

2.13 Si le pidiera calificar la importancia que tiene el recurso agua para el desarrollo de su vida diaria, ¿qué le calificaría
 a. Muy importante
 b. Importante
 c. Poco importante
 d. No es importante

2.14 Algún miembro de su familia ha padecido de enfermedades gastrointestinales, parasitarias o dermatológicas durante el último año?
 a. No ha habido enfermedades en la familia
 b. Si ha habido enfermedades en la familia cuantos

2.15 Estas personas han asistido al centro de salud?
 a. Si
 b. No
 Porque: ..

2.16 Si asiste a un centro de salud ¿A cuánto asciende los gastos de curación por persona?
--Nuevos soles (Consulta)
--Nuevos soles (Medicinas)
2.17 Si no asiste a un centro de salud como se curó?
 a. Tratamiento Casero
 b. Auto medico
 c. No se trató (porque fue leve)

2.18 Cree usted que las enfermedades que se presentaron dentro de su familia tienen como causa principal el consumo de agua no potable?
 a. Si
 b. No

2.19 Mencione algunos de los problemas que actualmente afectan las fuentes de abastecimiento de la que proviene el agua.

--

Alcantarillado

2.20 Cuenta con servicio de alcantarillado en su hogar?
 a. Si
 b. No

2.21 (Si la pregunta anterior contesto “SI” responda esta pregunta si respondió “NO” pase a la siguiente pregunta) Como considera el servicio actual?
 a. Bueno
 b. Malo
 c. Regular

2.22 Donde realiza sus necesidades fisiológicas

--

2.23 Existe acumulación de aguas servidas cerca a su hogar?
 a. Si
 b. No

2.24 (Si la pregunta anterior contesto “SI” responda esta pregunta si respondió “NO” pase a la siguiente pregunta). Cree que esta acumulación de aguas en mal estado pueden considerarse un riego para la salud de usted y de su familia
 a. Si
 b. No
Porque:

Disponibilidad a pagar

2.25 Cuál es la tarifa de pago mensual en nuevos soles que usted realiza por el pago de agua potable y alcantarillado?

.............. Nuevos soles

2.26 Estaría usted dispuesto a pagar una cuota mensual adicional por el servicio de agua y alcantarillado para que esta se utilice en el mejoramiento, protección y ampliación de agua potable en la zona de estudio.

a. Si
b. No

Porque:

2.27 Cuál sería la cantidad máxima en nuevos soles que estaría dispuesto pagar?

................... nuevos soles

2.28 Cuál sería la cantidad mínima en nuevos soles que estaría dispuesto pagar?

................... nuevos soles

2.29 Con que frecuencia estaría dispuesto a pagar para la ejecución del perfil de inversión pública del mejoramiento y ampliación de agua potable y alcantarillado?

a. Mensual
b. Bimestral
c. Trimestral
d. Semestral
e. Anual

2.30 Me gustaría saber cuáles de los motivos que le presentamos a continuación considera Ud. Importante para aceptar realizar este aporte monetario?

a. Por la disminución de enfermedades.
b. Por la disminución de los malos olores.
c. Ausencia de insectos y roedores y otros bichos transmisores de enfermedades.
d. Para que mis nietos y la población en general puedan disfrutar de agua saludable.